tam giác abc vuông tai a,đường cao AH.từ H dựng HM vuông góc AC,HN vuông góc AB. a)Cm:CA.AC=AN.AB b)Cm:CA.BA.BN=AH4 c)Cm:BN.BC=AH3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
Xét ΔMBH vuông tại M và ΔNCH vuông tại N có
HB=HC
góc B=góc C
=>ΔMBH=ΔNCH
b: AM=AN
HN=HM
=>AH là trung trực của MN
=>AH vuông góc MN
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12(cm)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2=AM*AB
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=12\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Câu a là AM.AC=AN.AB nhé mn tớ viết nhầm;-;