\(\frac{1}{3}\) =\(\frac{1}{a}\) +\(\frac{1}{b}\)
tính giá trị a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(a+b+c\right)=\frac{1}{3}.2028\)
=>\(\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{c+a}{c+a}+\frac{b}{c+a}\right)=676\)
=>\(\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}+3=676\)
=>\(Q=673\)
Vậy Q=673
dự đoán của chúa Pain
a=b=c=\(\frac{2028}{3}\)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{2\left(a+b+c\right)}\left(cosi\right).\)
\(Q\ge\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}+\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{2\left(a+b+c\right)}\)
\(Q\ge\frac{1}{2}+\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\left(a+b+c\right)}\)
có
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{a^2b^2c^2}}=3\sqrt[3]{abc}\)
có
\(a+b+c\ge3\sqrt[3]{abc}\)
thay vào ta được
\(Q\ge\frac{1}{2}+\frac{3\sqrt[3]{abc}}{3\sqrt[3]{abc}}=\frac{1}{2}+1=\frac{3}{2}\)
dấu = xảy ra khi \(a=b=c=\frac{2028}{3}=676\)
thử thay vào ta được
\(Q=\frac{676}{2\left(676\right)}+\frac{676}{2\left(676\right)}+\frac{676}{2\left(676\right)}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\) ( đúng )
\(\begin{array}{l}a)A = (2 - \frac{1}{2} - \frac{1}{8}):(1 - \frac{3}{2} - \frac{3}{4})\\ = (\frac{{16}}{8} - \frac{4}{8} - \frac{1}{8}):(\frac{4}{4} - \frac{6}{4} - \frac{3}{4})\\ = \frac{{11}}{8}:\frac{{ - 5}}{4}\\ = \frac{{11}}{8}.\frac{4}{{ - 5}}\\ = \frac{{ - 11}}{{10}}\\b)B = 5 - \frac{{1 + \frac{1}{3}}}{{1 - \frac{1}{3}}}\\ = 5 - \frac{{\frac{3}{3} + \frac{1}{3}}}{{\frac{3}{3} - \frac{1}{3}}}\\ = 5 - \frac{{\frac{4}{3}}}{{\frac{2}{3}}}\\ = 5 - \frac{4}{3}:\frac{2}{3}\\ = 5 - \frac{4}{3}.\frac{3}{2}\\ = 5 - 2\\ = 3\end{array}\)
Chú ý:
Khi thực hiện phép cộng hai phân số, nếu phân số thu được chưa tối giản thì ta rút gọn thành phân số tối giản.
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)abc=\frac{3}{4}8\Rightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=\frac{3.8}{4}\Leftrightarrow\)\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=6\)
2) Ta có : \(\left|x-1\right|+\left|1-x\right|=2\) (1)
Xét 3 trường hợp :
1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)
2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)
3. Với x = 1 , phương trình vô nghiệm.
Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)
1) Cách 1:
Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)
Vậy Min A = 9 <=> a = b = c
Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)
Đặt A = \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta có : A+ 3 = \(\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)
= \(\frac{a+b+c}{b+c}+\frac{b+c+a}{c+a}+\frac{c+a+b}{a+b}\) = \(\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{b+a}\right)\)
Thấy giả thiết vào => A+3 = 1 +> A=-2
\(A=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{\left(ab\right)^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{\left(ab\right)^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{ab}\)
\(=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{1^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{1^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{1}\)
\(=\frac{a^2-ab+b^2}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)\(=\frac{\left(a^3+b^3\right)\left(a+b\right)+3a^2+3b^2+6}{\left(a+b\right)^4}\)
\(=\frac{a^4+a^3b+ab^3+b^4+3a^2+3b^2+6}{a^4+4a^3b+6a^2b^2+4ab^3+b^4}\)\(=\frac{a^4+a^2.1+1.b^2+b^4+3a^2+3b^2+6}{a^4+4a^2.1+6.1^2+4b^2.1+b^4}\)
\(=\frac{a^4+4a^2+4b^2+b^4+6}{a^4+4a^2+6+4b^2+b^4}=1\)
a=b=6
\(\frac{1}{3}=\frac{1}{a}+\frac{1}{b}\)
\(\frac{1}{3}=\frac{1}{\frac{6}{2}}\)
\(\Rightarrow\frac{1}{3}=\frac{1}{6}+\frac{1}{6}\)
\(a=b=6\)