2x/5=y/3 và x+3y=20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có:\(2x+3y-2=186\Rightarrow2x+3y=188\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{94}{45}\Rightarrow x=\frac{94}{3}\\\frac{y}{20}=\frac{94}{45}\Rightarrow x=\frac{376}{9}\\\frac{z}{28}=\frac{94}{45}\Rightarrow x=\frac{2632}{45}\end{cases}}\)
b,Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{18}=\frac{2x+3y-z}{2.15+3.20-18}=\frac{372}{62}=6\)
Tự tìm x
c,\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Tự áp dụng
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x+3y-2z}{4+9-8}=\frac{20}{5}=4\)
\(\frac{x}{2}=4\Leftrightarrow x=8\)
\(\frac{y}{3}=4\Leftrightarrow y=12\)
\(\frac{z}{4}=4\Leftrightarrow z=16\)
Vậy x = 8 ; y = 12 ; z = 16
\(\dfrac{2x}{5}=\dfrac{y}{3}\) ⇒ \(\dfrac{2x}{5}\) \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{y}{3}\) \(\times\) \(\dfrac{1}{2}\) \(\Rightarrow\) \(\dfrac{x}{5}\) = \(\dfrac{y}{6}\) ⇒ \(\dfrac{x}{5}\) = \(\dfrac{3y}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\) = \(\dfrac{3y}{18}\) = \(\dfrac{x+3y}{5+18}\) = \(\dfrac{20}{23}\)
\(x\) = \(\dfrac{20}{23}\) \(\times\) 5 = \(\dfrac{100}{23}\); \(y\) = \(\dfrac{20}{23}\) : \(\dfrac{3}{18}\) = \(\dfrac{120}{23}\)
Kết luận: \(x\) = \(\dfrac{100}{23}\) và \(y\) = \(\dfrac{120}{23}\)