Giải PT sau: 1,6x2 \(-\) 2x + 0,4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x^2-7x+6=0$
$\Leftrightarrow (2x^2-4x)-(3x-6)=0$
$\Leftrightarrow 2x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(2x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $2x-3=0$
$\Leftrightarrow x=2$ hoặc $x=\frac{3}{2}$
2x2 - 7x + 6 = 0
\(\Leftrightarrow\) 2x2 - 4x - 3x + 6 = 0
\(\Leftrightarrow\) (2x2 - 4x) - (3x - 6) = 0
\(\Leftrightarrow\) 2x(x - 2) - 3(x - 2) = 0
\(\Leftrightarrow\) (x - 2)(2x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\)
S = \(\left\{2,\dfrac{3}{2}\right\}\)
\(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)
\(\left\{{}\begin{matrix}2x-5=0\\2x^2-7x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
2x³ + 3x² + 6x + 5 = 0
⇔ 2x³ + 2x² + x² + x + 5x + 5 = 0
⇔ (2x³ + 2x²) + (x² + x) + (5x + 5) = 0
⇔ 2x²(x + 1) + x(x + 1) + 5(x + 1) = 0
⇔ (x + 1)(2x² + x + 5) = 0
⇔ (x + 1)[2(x² + 2.x.1/4 + 1/16) + 79/16] = 0
⇔ (x + 1)[(2(x + 1/4)² + 79/16] = 0
⇔ x + 1 = 0 (do 2(x + 1/4)² + 79/16 > 0 với mọi x)
⇔ x = -1
Vậy S = {-1}
\(\left(3x-1\right)\left(2x-3\right)\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x-3\right)^2\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy................
-
Lời giải:
-
Tập xác định của phương trình
-
Lời giải bằng phương pháp phân tích thành nhân tử
-
Giải phương trình
-
Đơn giản biểu thức
-
Giải phương trình
-
Biệt thức
-
Biệt thức
-
Nghiệm
-
Giải phương trình
-
Đơn giản biểu thức
-
Lời giải thu được
Kết quả:
-
\(\Leftrightarrow2^{-3}.2^{2x}-3.2^{-2}.2^x+1=0\)
\(\Leftrightarrow\dfrac{1}{8}2^{2x}-\dfrac{3}{4}2^x+1=0\)
Đặt \(2^x=t>0\)
\(\Rightarrow\dfrac{1}{8}t^2-\dfrac{3}{4}t+1=0\Rightarrow\left[{}\begin{matrix}t=4\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
2x2 -4x=0
\(\Leftrightarrow2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy S = \(\left\{0;2\right\}\)
pt <=> (2x-5-x-2).(2x-5+x+2) = 0
<=> (x-7).(3x-3) = 0
<=> x-7=0 hoặc 3x-3=0
<=> x=7 hoặc x=1
Vậy ............
Tk mk nha
(2x-5)²-(x+2)²=0
(2x-5-x-2)(2x-5+x+2)=0
(x-7)(3x-3)=0
\(\Rightarrow\)x=7 hoặc x=1
=>4x^2-5x+1=0
=>(x-1)(4x-1)=0
=>x=1 hoặc x=1/4
\(1,6x^2-2x+0,4=0\)
\(\Leftrightarrow\dfrac{8}{5}x^2-2x+\dfrac{2}{5}=0\)
\(\Leftrightarrow\dfrac{8}{5}x^2-\dfrac{8}{5}x-\dfrac{2}{5}x+\dfrac{2}{5}=0\)
\(\Leftrightarrow\dfrac{8}{5}x\left(x-1\right)-\dfrac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{8}{5}x-\dfrac{2}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{8}{5}x-\dfrac{2}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{8}{5}x=\dfrac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{1;\dfrac{1}{4}\right\}\)