tìm giá trị nhỏ nhất của: x-2\(\sqrt{x-1}\)(x>=1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Để \(P=\dfrac{7}{2}\) thì \(2x+2\sqrt{x}+2-7\sqrt{x}=0\)
\(\Leftrightarrow2x-4\sqrt{x}-\sqrt{x}+2=0\)
\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)
a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
`P=\sqrt{1-x}+\sqrt{1+x}+2\sqrtx(0<=x<=1)`
Áp dụng BĐT `\sqrta+\sqrtb>=\sqrt{a+b}`
`=>\sqrt{1-x}+\sqrt{x}>=1`
`=>P>=1+\sqrtx+\sqrt{x+1}>=1+0+1=2`
Dấu "=" `<=>x=0`
\(M=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
2) Thay x=9 vào M đã rút gọn ta được:
\(M=\dfrac{\sqrt{9}-1}{9+\sqrt{9}+1}=\dfrac{2}{13}\)
3) Có \(M=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow x.M+\sqrt{x}\left(M-1\right)+1+M=0\) (*)
Tại x=0 pt (*) <=> M=-1 (1)
Tại x khác 0, coi pt (*) là pt bậc 2 ẩn \(\sqrt{x}\)
Pt (*) có nghiệm không âm <=> \(\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3M^2-6M+1\ge0\\\dfrac{1-M}{M}\ge0\\\dfrac{1+M}{M}\ge0\end{matrix}\right.\)
\(\Rightarrow0< M\le\dfrac{-3+2\sqrt{3}}{3}\) (2)
Từ (1) (2)=> \(M_{min}=-1\) <=> x=0
\(P=\dfrac{\sqrt{x}+1+\sqrt{x}}{\sqrt{x}+1}=1+\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
Do \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\ge0\) ; \(\forall x\ge0\)
\(\Rightarrow P\ge1\)
\(P_{min}=1\) khi \(x=0\)
đk \(x\ge0,\)\(< =>P=2+\dfrac{-1}{\sqrt{x}+1}\ge2-1=1\)
dấu"=" xảy ra<=>x=0(tm)
Ta có:
\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)
\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)
\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)
Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)
\(a,P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(x+16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{x+16}{\sqrt{x}+3}\\ b,P=4\Leftrightarrow\dfrac{x+16}{\sqrt{x}+3}=4\\ \Leftrightarrow x+16=4\sqrt{x}+12\\ \Leftrightarrow x-4\sqrt{x}+4=0\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\\ \Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
\(c,P=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\\ P=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}-6=2\cdot5-6=4\\ P_{min}=4\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Leftrightarrow\sqrt{x}+3=5\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,x=3-2\sqrt{2}\Leftrightarrow\sqrt{x}=\sqrt{2}-1\\ \Leftrightarrow P=\dfrac{3-2\sqrt{2}+16}{\sqrt{2}-1+3}=\dfrac{19-2\sqrt{2}}{\sqrt{2}+2}\\ P=\dfrac{\left(19-2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}=\dfrac{42-23\sqrt{2}}{2}\)
\(A=x-2\sqrt{x-1}\)
\(=x-1-2\sqrt{x-1}+1-1\)
\(=\left(\sqrt{x-1}-1\right)^2\ge0\)
Vậy GTNN là \(A=0\) khi \(x=2\)
x-2 Căn (x-1)=(x-1)-2 Căn (x-1)+1= Căn (x-1)+1=(Căn (x-1)-1)2>=0
Dấu = xảy ra khi x=2
Vậy Min=0 khi x=1
K nha