K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

Với m = 3 thì (d): y = 8x - 7

PTHĐGĐ của (P) và (d): \(x^2-8x+7=0\)

Có: \(a+b+c=1+\left(-8\right)+7=0\)

=> PT có 2 nghiệm phân biệt \(x_1=1;x_2=7\)

\(x_1=1\Rightarrow y_1=x_1^2=1^2=1\\ x_2=7\Rightarrow y_2=x_2^2=7^2=49\)

Tọa độ giao điểm của (P) và (d) là: \(\left(1;1\right);\left(7;49\right)\)

b)

PTHĐGĐ của (P) và (d) là: 

\(x^2-2\left(m+1\right)x+3m-2=0\)

\(\Delta'=\left(m+1\right)^2-\left(3m-2\right)=m^2+2m+1-3m+2=m^2-m+3\\ =m^2-m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)

Theo đề: \(x_1^2+x_2^2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)

\(\Leftrightarrow4m^2+8m+4-6m+4=20\\ \Leftrightarrow4m^2+2m+8-20=0\\ \Leftrightarrow4m^2+2m-12=0\\ \Leftrightarrow2m^2+m-6=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-2\left(tm\right)\\m=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)

22 tháng 6 2023

Gọi tọa độ của \(\left(P\right),\left(d\right)\) là \(A\left(x_A;y_A\right),B\left(x_B;y_B\right)\)

\(a,m=3\)

\(\Rightarrow x^2=2\left(3+1\right)x-3.3+2\)

\(\Rightarrow x^2-8x+7=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

Thay \(x=7\) vào \(\left(P\right):y=x^2\Rightarrow y=7^2=49\)

Khi m = 3 thì đường thẳng \(\left(d\right):y=2\left(3+1\right)x-3.3+2=8x-7\)

Thay \(x=1\) vào \(\left(d\right):y=8x-7=8.1-7=1\)

Vậy \(A\left(7;49\right),B\left(1;1\right)\)

\(\Rightarrow y=\left(2m+2\right)x-3m+2\)

\(b,\) Vì \(\left(P\right)\) và \(\left(d\right)\) luôn cắt nhau tại 2 điểm pb A,B \(\forall m\) nên :

\(x^2=2\left(m+1\right)x-3m+2\Leftrightarrow x^2-2\left(m+1\right)x+3m-2\)

Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=3m-2\end{matrix}\right.\)

Ta có : \(x_1^2+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\)

\(\Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)

\(\Leftrightarrow4m^2+8m+4-6m+4-20=0\)

\(\Leftrightarrow4m^2+2m-12=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m=-2\end{matrix}\right.\)

Vậy \(m=\dfrac{3}{2},m=-2\) thì thỏa mãn đề bài.

11 tháng 11 2021

\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)

\(\Leftrightarrow-n^3+n⋮n^3+1\)

\(\Leftrightarrow n=1\)

10 tháng 3 2022

260% của 25 kg là:

    260 x 25 : 100 = 65(kg)

            Đáp số: 65 (kg)

Tik mình nha!Cảm ơn!Học tốt

10 tháng 3 2022

bài giải 
260% của 25 là : 260 x 25 : 100 = 65(kg) ấn đúng nha.

11 tháng 1 2022

Tách nhỏ câu hỏi ra bạn

11 tháng 1 2022

tưởng ai đó đi ngủ r cơ mà :<

9 tháng 2 2022

hi vọng có ai giúp 

9 tháng 2 2022

\(a,=\dfrac{12\times\left(4+6\right)}{24}=\dfrac{12\times10}{24}=\dfrac{120}{24}=5\\ b,=\dfrac{16\times\left(8-2\right)}{48}=\dfrac{16\times6}{48}=\dfrac{96}{48}=2\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.

13 tháng 7 2023

Câu h của em đây nhé

h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{2}\)

= -2

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

15 tháng 12 2021

Các bạn không làm đề này trong 1h

15 tháng 12 2021

Là sao ạ