Cho tam giác ABC vuông tại B, đường cao BH = 12/5cm và 4AB=3BC. Tính AB,AC,BC,AH,CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4AB=3BC\Leftrightarrow AB=\dfrac{3}{4}BC\)
Áp dụng HTL: \(AB^2=BH\cdot BC\Leftrightarrow\dfrac{9}{16}BC^2=\dfrac{12}{5}BC\Leftrightarrow BC\left(\dfrac{9}{16}BC-\dfrac{12}{5}\right)=0\\ \Leftrightarrow BC=\dfrac{12}{5}:\dfrac{9}{16}=\dfrac{64}{15}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{16}{5}\left(cm\right)\)
Áp dụng HTL và PTG: \(\left\{{}\begin{matrix}AC=\sqrt{BC^2-AB^2}=\dfrac{16\sqrt{7}}{15}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{28}{15}\left(cm\right)\end{matrix}\right.\)
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm
b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm
c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm
Xét tam giác ABC vuông tại A
+ Theo định lý Pytago ta có:
+ Theo hệ thức lượng trong tam giác vuông ta có:
A B 2 = BH. BC => BH = A B 2 B C = 3 2 5 = 9 5 = 1 , 8 c m
Mà BH + CH = BC => CH = BC – BH = 5 – 1,8 = 3,2 cm
Lại có AH. BC = AB.AC => AH = A B . A C B C = 3.4 5 = 2,4cm
Vậy BH = 1,8cm, CH = 3,2cm, AC = 4cm, AH = 2,4 cm
Đáp án cần chọn là: B
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=16\)
hay AC=4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=1.8cm\\CH=3.2cm\\AH=2.4cm\end{matrix}\right.\)
Xét tam giác ABC vuông tại A
+ Theo định lý Pytago ta có:
+ Theo hệ thức lượng trong tam giác vuông ta có:
A B 2 = BH. BC => BH = A B 2 B C = 3 2 5 = 9 5 = 1 , 8 c m
Mà BH + CH = BC => CH = BC – BH = 5 – 1,8 = 3,2 cm
Lại có AH. BC = AB.AC => AH = A B . A C B C = 3.4 5 = 2,4cm
Vậy BH = 1,8cm, CH = 3,2cm, AC = 4cm, AH = 2,4 cm
a.
Xét tam giác ABC vuông tại A, có:
AB^2 + AC^2 = BC^2 (Định Lý Pytago) => BC^2 = 25+144 = 169
=> BC = 13 (cm)
sinB = AC/BC = 12/13 => B = 67.4 (độ)
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>HB*HC=4
BH+CH=5
=>BH=5-CH
HB*HC=4
=>HC(5-CH)=4
=>5HC-HC^2-4=0
=>HC^2-5HC+4=0
=>HC=1cm hoặc HC=4cm
TH1: HC=1cm
=>HB=4cm
\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)
TH2: HC=4cm
=>HB=1cm
\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)
Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}\)
hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)
=> \(BC=\sqrt{169}=13\left(cm\right)\)
=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Xét tam giác ABC và tam giác MNC có:
\(\widehat{BAC}=\widehat{NMC}=90^0\)
\(\widehat{C}\)chung
=> Tam giác ABC ~ tam giác MNC ( g-g )
=> \(\frac{AB}{MN}=\frac{AC}{MC}\)
hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)
b) Xét tam giác ABC vuông tại A
Đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)
=> \(\frac{1}{AH^2}=\frac{169}{3600}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )
Xét tam giác AHB vuông tại H có:
Theo Pytago có:
\(BH^2=AB^2-AH^2\)
hay \(BH^2=5^2-\frac{3600}{169}\)
=> \(BH^2=25-\frac{3600}{169}\)
=>\(BH^2=\frac{625}{169}\)
=> \(BH=\frac{25}{13}\)( cm )
Ta có: BH + HC = BC
hay \(\frac{25}{13}+HC=13\)
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
Có \(4AB=3BC\Rightarrow BC=\dfrac{4AB}{3}\)
+) Tam giác ABC vuông tại B có:
\(AC^2=AB^2+BC^2\left(pytago\right)\)
\(\Rightarrow AC=\sqrt{AB^2+BC^2}=\sqrt{AB^2+\left(\dfrac{4AB}{3}\right)^2}=\dfrac{5AB}{3}\)
+) Tam giác ABC vuông tại B, đường cao BH có:
\(AB.BC=BH.AC\\\Leftrightarrow AB.\dfrac{4AB}{3}=\dfrac{12}{5}.\dfrac{5AB}{3}\\ \Rightarrow AB=3\left(cm\right) \)
\(\Rightarrow BC=\dfrac{4AB}{3}=\dfrac{4.3}{3}=4\left(cm\right),AC=\dfrac{5AB}{3}=\dfrac{5.3}{3}=5\left(cm\right)\)
-) Có: \(AB^2=AH.AC\) (hệ thức lượng)
\(\Leftrightarrow3^2=AH.5\\ \Rightarrow AH=\dfrac{9}{5}\left(cm\right)\)
-) Có: \(BC^2=CH.AC\) (hệ thức lượng)
\(\Leftrightarrow4^2=CH.5\\ \Rightarrow CH=\dfrac{16}{5}\left(cm\right)\)
4AB=3BC
=>AB/3=BC/4=k
=>AB=3k; BC=4k
1/BA^2+1/BC^2=1/BH^2=1/2,4^2
=>k=1
=>AB=3cm; BC=4cm
AC=căn 3^2+4^2=5cm
AH=3^2/5=1,8cm
CH=5-1,8=3,2cm