K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 6 2023

Đề thiếu. Bạn coi lại đề.

dạ không cần nữa đâu ạ 

 

24 tháng 10 2023

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

8 tháng 10 2021

\(M=\sqrt{a^2+2ab+b^2+b^2}+\sqrt{b^2+2bc+c^2+c^2}+\sqrt{c^2+2ca+a^2+a^2}\)

\(M=\sqrt{\left(a+b\right)^2+b^2}+\sqrt{\left(b^{ }+c\right)^2+c^2}+\sqrt{\left(c+a\right)^2+a^2}\)

\(M\ge\sqrt{\left(a+b+b+c+c+a\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\left[2\left(a+b+c\right)\right]^2+3^2}\ge\sqrt{6^2+3^2}\ge3\sqrt{5}\)

\(dấu\)\("="xảy\) \(ra\) \(\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

Cách khác:

Áp dụng BĐT Bunhiacopxky:

$5(a^2+2ab+2b^2)=[(a+b)^2+b^2](2^2+1^2)\geq [2(a+b)+b]^2$

$\Rightarrow \sqrt{5(a^2+2ab+b^2)}\geq 2a+3b$

Tương tự với các căn thức còn lại và cộng theo vế:

$M\sqrt{5}\geq 5(a+b+c)$

$\Leftrightarrow M\geq \sqrt{5}(a+b+c)=3\sqrt{5}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

17 tháng 4 2022

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

-Ta có hằng đẳng thức: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(P=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}+2bc+2ca+2ab\)

\(=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}=\dfrac{2\left(b^3c^3+c^3a^3+a^3b^3\right)}{a^2b^2c^2}=\dfrac{2.\left(ab+bc+ca\right)\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=\dfrac{2.0.\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=0\)

17 tháng 4 2022

-C/m hằng đẳng thức trên:

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\left(đpcm\right)\)

23 tháng 6 2020

Ta có:

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )

Áp dụng:

\(G=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)

\(\ge\frac{ab\left(a+b\right)}{2ab}+\frac{bc\left(b+c\right)}{2bc}+\frac{ca\left(c+a\right)}{2ca}\)

\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\)

\(=a+b+c=2019\)

Dấu "=" xảy ra tại a=b=c=673

23 tháng 6 2020

Giá trị tuyệt đối A= | x - 2 | + | x - 5|

26 tháng 5 2017

Ôn tập cuối năm phần số học

30 tháng 5 2017

coi lại dấu " = " xảy ra khi nào dùm t ... , bài lm của m hay mak kl như cái qq ...

NV
11 tháng 3 2022

\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(4+1\right)\left[\left(a+b\right)^2+b^2\right]}\ge\dfrac{1}{\sqrt{5}}\left(2a+2b+b\right)=\dfrac{1}{\sqrt{5}}\left(2a+3b\right)\)

Tương tự:

\(\sqrt{b^2+2bc+2c^2}\ge\dfrac{1}{\sqrt{5}}\left(2b+3c\right)\)

\(\sqrt{c^2+2ca+2a^2}\ge\dfrac{1}{\sqrt{5}}\left(2c+3a\right)\)

Cộng vế:

\(P\ge\dfrac{1}{\sqrt{5}}\left(5a+5b+5c\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

2 tháng 8 2022

Nguyễn Việt Lâm Giáo viên, thầy ơi cho em hỏi làm thế này rồi làm tiếp có ra  như trên được không ạ?? Em làm kiểu này không ra như trên!!!

\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(1+4\right).[\left(a+b\right)^2+b^2]}\ge\dfrac{1}{\sqrt{5}}.\left(a+b+2b\right)=\dfrac{1}{\sqrt{5}}.\left(a+3b\right)\)