Chung minh rang
3n+2-2n+2+3n-2n chia het cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3n+1)\(⋮\)(2n+3)
=>[2(3n+1)-3(2n+3)]\(⋮\)(2n+3)
=> [6n+2-6n-9] \(⋮\)(2n+3)
=> -7 \(⋮\)(2n+3)
=>2n+3\(\in\)Ư(-7)={-1;-7;1;7}
Ta có bảng:
2n+3 | -1 | -7 | 1 | 7 |
n+3 | 7 | 1 | -7 | -1 |
n | 4 | -2 | -10 | -4 |
Vậy n\(\in\){4;-2;-10;-4}
(n2 +5)\(⋮\)(n+1)
=>[(n2 +5)-n(n+1)]\(⋮\)(n+1)
=>[n2+5-n2-1] \(⋮\)(n+1)
=> 4 \(⋮\)(n+1)
=>n+1\(\in\)Ư(4)={-1;-2;-4;1;2;4}
Ta có bảng:
n+1 | -1 | -2 | -4 | 1 | 2 | 4 |
n | -2 | -3 | -5 | 0 | 1 | 3 |
Vậy n={-2;-3;-4;0;1;3}
Mik chỉ làm đc 2 câu thôi nếu đúng thì k cho mk nhé!
n+7 chia het n-2
suy ra (n-2)+9 chia het n-2
suy ra 9 chia het n-2
suy ra n-2 \(\in\) Ư(9)={1;3;9} nếu bạn chưa học số âm
suy ra n-2 \(\in\) Ư(9)={1;3;9;-1;-3;-9} nếu bạn học số âm rồi
n-2=1 n-2=3 n-2=9
n =1+2 n =3+2 n =9+2
n = 3 n =5 n =11 nếu bạn học số âm rồi thì làm tiếp theo cách này còn nếu chưa thì đến đây là hết
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
a, ( 2n + 6 ) chia het ( 2n - 1 )
Vì ta thấy số 2 đã là số lẻ nên nhóm chúng:
2n và khi 6 ở 1 đầu cuối thì => \(⋮\)1
=> nhóm chúng 2n + (6:1)
=> 2n + 6 => : 1
=> 2n + 6 \(⋮\) (2n-1)
=> 2n + 6 ) chia het ( 2n - 1 )
Cách 2 :
Đặt 2n ra ngoài
2n + 6 = 6 : 2n -1
2n + 6 = 3
Mà 2n + 6 : 3
Hay : 2n +6 sẽ : 2n -1
=. ( 2n + 6 ) chia het ( 2n - 1 )
Vì 6=23 và (2.3)=1
Ta có:
n^3+3n^2+n=n^2(n+1)+2n(n+1) =n(n+1)(n+2)
Nhận thấy n(n+1)(n+2) là tích 3 số nguyên liên tiếp
suy ra Tồn tại 1 số chia hết cho 2 (vì n(n+1) là tích 2 số nguyên liên tiếp) (với mọi số nguyên n)
Tồn tại 1 số chia hết cho 3 (vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)
suy ra n(n+1)(n+2) chia hết cho 2,3
hay n^3+3n^2+2n chia hết cho 6
suy ra ĐPCM
a. n - 7 chia het cho n - 2
=> n - 7 . n - 2 chia het cho n - 2
=> n . ( 7 - 2 ) chiua het cho n - 7
=> 5 chia het cho n - 2
=> n - 2 \(\in\) Ư(5)
Ư(5) = { 1;5}
=> n - 2 \(\in\) 1 ; 5
=> n \(\in\) 3;7
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
3n+2-2n+2 +3n-2n
=(3n+2+3n)+(-2n+2 -2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1)chia hết cho 10
Vậy 3n+2-2n+2 +3n-2n chia hết cho 10
Ta có : 3n + 2 - 2n + 2 + 3n - 2n
= 3n . 32 - 2n . 22 + 3n - 2n
= 9 . 3n + 3n - 4 . 2n - 2n
= 10 . 3n - 5 . 2n
= 10 . 3n - 10 . 2n - 1
= 10 . ( 3n - 2n - 1 ) chia hết cho 10
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot3^2-2^n\cdot2^2+3^n-2^n\)
\(=9\cdot3^n+3^n-4\cdot2^n-2^n\)
\(=10\cdot3^n-5\cdot2^n\)
\(=10\cdot3^n-10\cdot2^{n-1}\)
\(=10\cdot\left(3^n-2^{n-1}\right)\) chia hết cho 10