Cho số tự nhiên A = \(\overline{3x4y}\) tìm các chữ số x, y để A chia hết cho cả 2; 5 và 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B⋮2\) và \(B⋮5\)
=>\(B⋮10\)
=>b=0
Ta lại có: \(B⋮3\) => 5+7+a+2+b \(⋮\)3
hay 14+a\(⋮\)3
=> a=1 hoặc a=4 hoặc a=7
Vậy có 3 số thỏa mãn 57120 ; 57420 ; 57720
a: \(A=\overline{3x4y}\)
A chia hết cho 2 và 5 nên A chia hết cho 10
=>y=0
=>\(A=\overline{3x40}\)
A chia hết cho 3
=>3+x+4+0 chia hết cho 3
=>x+7 chia hết cho 3
=>\(x\in\left\{2;5;8\right\}\)
Vậy: Các số có thể là 3240; 3540; 3840
b: \(B=\overline{1x5y}\)
B chia hết cho 5 nên y=5 hoặc y=0
TH1: y=0
B chia hết cho 9
=>1+x+5+0 chia hết cho 9
=>x+6 chia hết cho 9
=>x=3
TH2: y=5
B chia hết cho 9
=>1+x+5+5 chia hết cho 9
=>x+11 chia hết cho 9
=>x=7
Vậy: Các số cần tìm sẽ là 1350 hoặc 1755
c: \(C=\overline{x46y}\)
C chia hết cho 2 và 5 nên C chia hết cho 10
=>y=0
=>\(C=\overline{x460}\)
C chia hết cho 3và 9 nên C chia hết cho 9
=>x+4+6+0 chia hết cho 9
=>x+10 chia hết cho 9
=>x=8
vậy: Số cần tìm là 8460
a) Để \(\overline{163a}\) chia hết cho 5 thì \(a\in\left\{0;5\right\}\)
Mà số đó lại chia hết cho 3 nên: \(1+6+3+a=10+a\) ⋮ 3
Với a = 0 thì 10 + 0 = 10 không chia hết cho 3 (loại)
Với a = 5 thì 10 + 5 = 15 ⋮ 3 (nhận)
Vậy a = 5
b) Để \(\overline{712a4b}\) chia hết cho 2 và 5 thì \(b=0\)
Số đó có dạng \(\overline{712a40}\)
Mà số đó lại chia hết cho 3 và 9 nên: \(7+1+2+a+4+0=14+a\) ⋮ 9
\(14+a=18\Rightarrow a=4\)
Vậy (a;b) = (4;0)
\(\overline{62x1y}\) ⋮ 2 ; 5 ⇒ y = 0
\(\overline{62x1y}\) ⋮ 9 ⇒ 6 + 2 + \(x\) + 1 + y ⋮ 9 ⇒ \(x\) + y ⋮ 9 ⇒ \(x\) ⋮ 9 ⇒ \(x\) = 0; 9
Vậy (\(x\);y) = (0; 0); (9; 0)
a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.
=> y = 0
\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.
Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3
=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)
=> x\( \in \) {1; 4; 7}
Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.
b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5
=> y = 5
\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9
Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9
=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)
=> x = 3.
Vậy \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.
Vì A chia hết cho 2 và 5 nên A chia hết cho 10
=>y=0
Vì A chia hết cho 9
=>3+x+4+0 chia hết cho 9 hay 7+x chia hết cho 9
=>x=2
Vậy số cần tìm là 3240
\(\kappa\Theta\beta\iota\varepsilon\tau\)