K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc CND=góc CHD=90 độ

=>CNHD nội tiếp

2: góc CMO=góc DMH=90 độ-góc MDH

=90 độ-góc CDO

=góc OCM

=>ΔCOM cân tại C

8 tháng 2 2022

bn tk hén:

undefined

Ghi rõ tk không chuẩn bị câu trả lời pay màu này:)

8 tháng 2 2022

bn tk nhe:

 

undefined

 

8 tháng 2 2022

câu c đề bài có phải chứng minh tứ giác nt đâu bn 

15 tháng 7 2021

a) Vì AB là đường kính \(\Rightarrow\angle ADB=\angle ACB=90\)

\(\Rightarrow\angle FDE+\angle FCE=90+90=180\Rightarrow ECFD\) nội tiếp

b) GH cắt AD tại F'.F'B cắt AE tại C'

Ta có: \(\left\{{}\begin{matrix}F'H\bot AB\\BD\bot AF'\end{matrix}\right.\Rightarrow E\) là trực tâm \(\Delta F'AB\Rightarrow AE\bot F'B\Rightarrow AC'\bot F'B\)

mà AB là đường kính \(\Rightarrow C'\in\left(O\right)\Rightarrow C\equiv C'\Rightarrow F'\equiv F\Rightarrow\) đpcm

undefined

14 tháng 5 2021

Ta có: AC là tiếp tuyến của (O) (gt)

=) AC vuông góc OA 

=) Góc OAC = 90độ (1)

Lại có: DC là tiếp tuyến của (O) (gt)

=) DC vuông góc OD

=) Góc ODC = 90độ (2)

Từ (1) và (2) =) góc ODC + góc OAC = 180 độ

Mà 2 góc ở vị trí đối nhau                           

=) Tứ giác OACD nội tiếp

3 tháng 5 2022

M A B C D

a/

Ta có A và C cùng nhìn MO dưới 1 góc vuông nên A và C thuộc đường tròn đường kính MO => OAMC là tứ giác nội tiếp)

b/

Ta có

\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp MB\)

Xét tg vuông AMO có

\(MA^2=MD.MB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Mà MA=MC (Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)

=> \(MC^2=MB.MD\)

c/

Khi tg AMO quay xung quang AM thì tạo thành hình chóp có đáy là đường tròn tâm A bán kính OA=R, trung đoạn là MO=2R

\(S_{xq}=\dfrac{1}{2}\Pi R.MO=\Pi.R^2\)

 

10 tháng 2 2018

Bạn vẽ hình đi rùi mk làm cho nha

11 tháng 4 2018

ve hinh di ban 

a: Xét tứ giác AHMO có \(\widehat{HAO}+\widehat{HMO}=180^0\)

nên AHMO là tứ giác nội tiếp

Xét (O) có

HM là tiếp tuyến

HA là tiếp tuyến

Do đó: HM=HA và OH là tia phân giác của góc MOA(1)

Xét (O) có

KM là tiếp tuyến

KB là tiếp tuyến

Do đó: KM=KB và OK là tia phân giác của góc MOB(2)

Ta có: HM+MK=HK

nên HK=HA+KB

b: Từ (1) và (2) suy ra \(\widehat{HOK}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)