K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

Để phương trình đã cho có nghiệm nguyên thì

\(\Delta=a^2-4b\) phải là số chính phương lẻ.

\(\Rightarrow\Delta:8\)dư 1 (1)

Theo đề bài thì a, b lẻ nên ta đặt

\(\hept{\begin{cases}a=2m+1\\b=2n+1\end{cases}}\)

\(\Rightarrow\Delta=\left(2m+1\right)^2-4\left(2n+1\right)\)

\(=-8n+4m^2+4m-3\)

\(=-8n+4m\left(m+1\right)+8-5\)

\(\Rightarrow\Delta:8\) dư 5 (2)

Ta thấy (1) và (2) mâu thuẫn nhau nên nếu a, b lẻ thì phương trình không có nghiệm nguyên.

15 tháng 5 2017

Sửa cái cuối thành - 8 + 5 nhé. M bấm nhầm

27 tháng 1 2016

BÀI TOÁN PHỤ: CHứng minh rằng số chính phương lẻ chia cho 8 dư 1.

Giải: Xét số chính phương lẻ là \(m^2\left(m\in Z\right)\)

Như vậy m là số lẻ, đặt \(m=2n+1\)

Ta có:

\(m^2=\left(2n+1\right)^2=4n^2+4n+1=4.n.\left(n+1\right)+1\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n+1\right) \) chia hết cho 8

\(\Rightarrow4.n.\left(n+1\right)+1\) chia 8 dư 1

Vậy ta có điều phải chứng minh.

Vì a lẻ nên \(a\ne0\), phương trình \(ax^2+bx+c=0\) là phương trình bậc hai.

Xét \(\Delta=b^2-4ac\): b lẻ, theo bài toán phụ có \(b^2=8k+1\left(k\in Z\right)\)

a,c lẻ \(\Rightarrow\) \(ac\) lẻ

Đặt \(ac=2l-1\left(l\in Z\right)\)

Do đó \(\Delta=b^2-4ac=8k+1-4.\left(2l-1\right)=8k+1-8l+4=8\left(k-l\right)+5 \)chia cho 8 dư 5, theo bài toán phụ trên ta có \(\Delta\) không phải số chính phương.

\(\Delta\) là số nguyên, không phải óố chính phương \(\Rightarrow\sqrt{\Delta}\) là số vô tỉ

Nghiệm của phương trình đã cho (nếu có) là: \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)

b,a\(\in Z\)\(\sqrt{\Delta}\) vô tỉ nên x là vô tỉ.

Vậy phương trình có nghiệm nếu có thì các nghiệm ấy không thể là số hữu tỉ.

  

  


ơng   là phươngax2+bx+c=0

 

 

 

27 tháng 1 2016

Bài này có sự liên quan giữa các số lẻ a;b;c không? ( không = khó )

29 tháng 8 2015

Giả sử rằng \(r=\frac{p}{q}\) là nghiệm hữu tỉ của phương trình, trong đó \(p,q\) là các số nguyên, nguyên tố cùng nhau (tức phân số \(\frac{p}{q}\) tối giản).

Ta có ngay \(ap^2+bpq+q^2c=0\to4a^2p^2+4abpq+4acq^2=0\to\left(2ap+bq\right)^2=\left(bq\right)^2-4acq^2\)

Nếu q là số chẵn thì \(ap^2\) là số chẵn và do đó p chẵn, mâu thuẫn với tính nguyên tố cùng nhau.

Nếu q là số lẻ thì \(bq,2ap+bq\) là các số lẻ. Mặt khác một số chính phương lẻ luôn chia 8 dư 1 nên ta

suy ra \(\left(2ap+bq\right)^2-\left(bq\right)^2\vdots8.\) Do đó \(4acpq\vdots8\to acpq\vdots2\to p\vdots2\). Từ phương trình đầu suy ra \(cq^2\vdots2\to q\vdots2\), vô lí.

21 tháng 4 2020

Cách khác:

Đặt \(a=2p+1;b=2q+1;c=2r+1\left(p,q,r\in Z\right)\)

Giả sử phương trình \(ax^2+bx+c=0\) không có nghiệm hữu tỉ thì \(\Delta=b^2-4ac\) phải là số chính phương

Ta có:\(\Delta=\left(2q+1\right)^2-4\left(2r+1\right)\left(2p+1\right)\)

\(=4q^2+4q+1-\left(8r-4\right)\left(2p+1\right)\)

\(=4q^2+4q+1-\left(16pr+8r-8p-4\right)\)

\(=4q^2+4q-16pr+8r-8p+5\)

\(=8\left[\frac{q\left(q+1\right)}{2}-2pr+r-p\right]+5\equiv5\left(mod8\right)\)

vô lý vì số chính phương lẻ không thể chia 8 dư 5

=> đpcm