cho (P):y=1/2x^2 và (d):y=x-m
a) tìm tất cả các giá trị của m để (d) cắt (P) tại 2 điểm phân biệt nằm về cùng nửa mặt phẳng bờ là trục tung
b) tìm tất cả các giá trị m thuộc(P) sao cho khoảng cách từ M đến trục tung là 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d):
x2 + 2x -m2 + 1 = 0
Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0
Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)m \(\in\varnothing\)
a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m^2+2m=0\)
\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác 1
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)
Thay vào ta được \(2x_1+m^2+2x_2=5m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)
b) x2-2x-m2+2m=0
Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1
KL:....
c) với m≠1 thì PT có 2 nghiệm PB
C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)
tt. tính x2
C2.
Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)
Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)
Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:
\(P=x_1\left(2-x_1\right)=-m^2+2m\)
⇔2x1-x12=-m2+2m
⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)
⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)
Vậy với m=4 thì .....
\(x^2=2mx+1\Leftrightarrow x^2-2mx-1=0\Rightarrow\Delta'>0\Leftrightarrow m^2+1>0\left(luônđúng\right)\)
\(\Rightarrow\left(P\right)\left(d\right)\) \(luôn\) \(cắt\) \(tại2\) \(điểm\) \(pbA;B\Rightarrow\left\{{}\begin{matrix}x_A+x_B=2m\\xa.xb=-1\end{matrix}\right.\)
\(I\) \(trunng\) \(điểmAB\Rightarrow I\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(\dfrac{2m}{2};\dfrac{2mx_A+1+2mx_B+1}{2}\right)=\left(m;m.x_A+mx_B+1\right)\)
\(\Rightarrow OI=\sqrt{10}=\sqrt{m^2+\left(mx_A+mx_B+1\right)^2}\)
\(\Leftrightarrow10=m^2+\left[m\left(x_A+x_B\right)+1\right]^2=m^2+\left(2m^2+1\right)^2\)
\(\Leftrightarrow m^2+4m^4+4m^2+1=10\Leftrightarrow4m^4+5m^2-9=0\)
\(đặt:m^2=t\ge0\Rightarrow4t^2+5t-9=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(tm\right)\Rightarrow m=\pm1\\t=-\dfrac{9}{4}\left(ktm\right)\end{matrix}\right.\)
a: Phương trình hoành độ giao điểm là:
x^2-mx-4=0
a*c<0
=>(d) luôn cắt (P) tại hai điểm phân biệt
c: x1^2+mx2=6m-5
=>x1^2+x2(x1+x2)=6m-5
=>(x1+x2)^2-x1x2=6m-5
=>m^2-(-4)-6m+5=0
=>m^2-6m+9=0
=>m=3
a.
Phương trình hoành độ giao điểm: \(\dfrac{1}{2}x^2=x-m\Rightarrow x^2-2x+2m=0\)
\(\Delta'=1-2m>0\Leftrightarrow m< \dfrac{1}{2}\) (do (d) cắt (P) tại 2 điểm phân biệt)
Để 2 điểm nằm cùng về phía trục tung thì 2 nghiệm \(x_1,x_2\) cùng dấu.
Mà theo vi ét \(x_1+x_2=2\Rightarrow\) 2 nghiệm cùng dương.
\(\Rightarrow x_1+x_2=2m>0\Leftrightarrow m>0\)
Kết hợp điều kiện ta có \(0< m< \dfrac{1}{2}\)
b.
Từ M đến trục tung là 2 \(\Rightarrow\) \(\left|x\right|=2\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(M\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{2}.2^2=2\\y_2=\dfrac{1}{2}.\left(-2\right)^2=2\end{matrix}\right.\)
\(\Rightarrow M_1\in\left(2;2\right)\) và \(M_2\in\left(-2;2\right)\)