Tìm x , biết :
1/3x4 + 1/4x5 + 1/5x6 +...+ 1/97x 98 + 1/98x99 + x =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1. 456 = 10.(40+5)+6
A = 10( 44.....440 + 55....55) + 66..66 (... 111 số)
=499.....9950 + 66...66 (... 111 số 9 và 111 số 6)
= 55....5516 (....111 số 5)
b2. A - B = 1+2 + 3 + 4 +....+98 = 49 x100 + 51 = 4951
Bài nào khó lắm thì mới hỏi thôi chứ bài này dễ mà bạn tự vận động não đi
\(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{11\cdot12}=x\)
\(\Leftrightarrow x=\dfrac{1}{3}-\dfrac{1}{12}=\dfrac{4}{12}-\dfrac{1}{12}=\dfrac{1}{4}\)
\(\left(x+\dfrac{1}{2\times3}\right)+\left(x+\dfrac{1}{3\times4}\right)+\left(x+\dfrac{1}{4\times5}\right)+\left(x+\dfrac{1}{5\times6}\right)=\dfrac{25}{3}\)
\(x+\dfrac{1}{2\times3}+x+\dfrac{1}{3\times4}+x+\dfrac{1}{4\times5}+x+\dfrac{1}{5\times6}=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}\right)=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=\dfrac{25}{3}\)
\(x\times4+\dfrac{4}{12}=\dfrac{25}{3}\)
\(x\times4=\dfrac{25}{3}-\dfrac{4}{12}\)
\(x\times4=\dfrac{25}{3}-\dfrac{1}{3}\)
\(x\times4=\dfrac{24}{3}\)
\(x\times4=8\)
\(x=8\div4\)
\(x=2\)
:))
\(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{20\times21}=\dfrac{x}{14}\)
\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{7}{21}-\dfrac{1}{21}=\dfrac{x}{14}\)
\(\dfrac{6}{21}=\dfrac{x}{14}\)
\(\Rightarrow x.21=6.14\)
\(x.21=84\)
\(x=84:21\)
\(x=4\)
Vậy x = 4
1/3x4 + 1/4x5 + 1/5x6 + .. + 1/20x21 = x/14
1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + .. + 1/20 - 1/21 = x/14
1/3 - 1/21 = x/14
7/21 - 1/21 = x/14
6/21 = x/14
x . 21 = 6 x 14
x x 21 = 84
x = 84 : 21
x = 4
\(\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)
=\(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{4}-\frac{1}{100}\)
=\(\frac{6}{25}\)
\(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{7\times8}+....+\dfrac{1}{9\times10}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{7}{30}\)
Sửa đề:
\(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{10}{30}-\dfrac{3}{30}\)
\(=\dfrac{7}{30}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{21-2}{42}=\dfrac{19}{42}\)
Lời giải:
Gọi biểu thức số 1 là A và số 2 là B
\(A=\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
B tương tự A:
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}=\frac{19}{42}\)
1/3.4 + 1/4.5 + 1/5.6+ 1/6.7+....+1/x(x+1) =3/10
1/3 -1/4 + 1/4-1/5+ 1/5 -1/6+......+1/x -1/x+1 =3/10
1/3 -1/x+1= 3/10
1/x+1= 1/3 -3/10
1/x+1 = 1/30
=> x+1= 30
x= 30-1
x= 29
Vậy...
1/3x4 + 1/4x5 + 1/5x6 +...+ 1/97x 98 + 1/98x99 + x =1
=> 1/3-1/4+1/4-1/5+1/5-1/6+....+1/97-1/98 + 1/98-1/99 +x = 1
=> 1/3 - 1/99 +x=1
=> 32/99+x=1
=> x= 1-32/99
=> x = 67/99
67/99