Tính:
S=1+1/3+1/6+1/10+1/15+1/21+...+1/300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{3}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{300}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{6}+\frac{1}{12}+\cdot\cdot\cdot+\frac{1}{600}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2\times3}+\frac{1}{3\times4}+\cdot\cdot\cdot+\frac{1}{24\times25}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdot\cdot\cdot+\frac{1}{24}-\frac{1}{25}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{25}\)
\(\Rightarrow\frac{1}{2}S=\frac{23}{50}\)
\(\Rightarrow S=\frac{23}{50}:\frac{1}{2}\)
\(\Rightarrow S=\frac{23}{25}\)
S = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{300}\)
= \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{600}\right)\)
= \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{24\times25}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{24}-\frac{1}{25}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{25}\right)\)
\(=2\times\frac{23}{50}\)
\(=\frac{23}{25}\)
a=78/35
b=22/12
c=1/1
d=40202090/4040090
e=1,24025667172...
f=871,82
ko biết đúng ko [0_0'] hihi
\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)
\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)
\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)
\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)
\(S=\frac{9}{12}\)
\(S=\frac{3}{4}\)
A= 1/3+1/6+...+1/300
1/2 x A = 1/2 x (1/3+1/6+...+1/300)
A/2 = 1/6+1/12+..+1/600
A/2 = 1/(2x3) + 1/(3x4) +....+ 1/ (24x25)
A/2 = 1/2-1/3+1/3-1/4+....+1/24-1/25
A/2 = 1/2 - 1/25
A/2 = 23/50
A = 23/25
vậy...
3 x 15 + 21 x 15 + 85 x 5
= 45 + 315 + 425
= 785
15 - 30 + 40
= 25
21 + 19 - 50 + 10
= 0
\(\dfrac{1}{5}-\dfrac{1}{4}+2\)
\(=-\dfrac{1}{20}+2\)
\(=\dfrac{39}{20}\)
\(\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\)
\(=\dfrac{5}{12}\times\dfrac{1}{4}\)
\(=\dfrac{5}{12}\times\dfrac{3}{12}\)
\(=\dfrac{5}{48}\)
\(\dfrac{1}{10}+\dfrac{1}{5}-\dfrac{3}{4}\)
\(=-\dfrac{9}{20}\)
\(3\times15+21\times15+85\times5\\ =15\times\left(3+21\right)+425\\ =15\times24+425\\ =360+425\\ =785\)
\(15-30+40\\ =\left(15+40\right)-30\\ =55-30\\ =25\)
\(21+19-50+10\\ =\left(21+19\right)-\left(50-10\right)\\ =40-40\\ =0\)
\(\dfrac{1}{5}-\dfrac{1}{4}+2\)
\(=\dfrac{4}{20}-\dfrac{5}{20}+\dfrac{40}{20}\)
\(=\dfrac{\left(4+40\right)}{20}-\dfrac{5}{20}\)
\(=\dfrac{44}{20}-\dfrac{5}{20}\)
\(=\dfrac{39}{20}\)
\(\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\)
\(=\dfrac{5}{12}\times\dfrac{1}{4}\)
\(=\dfrac{5}{48}\)
\(\dfrac{1}{10}+\dfrac{1}{5}-\dfrac{3}{4}\)
\(=\dfrac{2}{20}+\dfrac{4}{20}-\dfrac{15}{20}\)
\(=\dfrac{6}{20}-\dfrac{15}{20}\)
\(=-\dfrac{9}{20}\)
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\)
A = 2\(\times\) ( \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\)+ \(\dfrac{1}{72}\))
A =2\(\times\)( \(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\))
A = 2 \(\times\) ( \(\dfrac{1}{1}\)- \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\))
A = 2\(\times\)( 1 - \(\dfrac{1}{9}\))
A = 2 \(\times\) \(\dfrac{8}{9}\)
A = \(\dfrac{16}{9}\)
B =1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28
B = 1 - 1/3 + 1/3 - 1/6 + 1/6 - 1/10 + 1/10 - 1/15 + 1/15 - 1/21 + 1/21 - 1/28
B = 1 - ( 1/3 + 1/3 - 1/6 + 1/6 - 1/10 + 1/10 - 1/15 + 1/15 - 1/21 + 1/21 ) - 1/28
B = 1 - 1/28
B = 27/28
~ Hok T ~
S1/2=1/2+1/6+1/12+...+1/600
S1/2=1/1*2+1/2*3+....+1/24*25
S1/2=1-1/25
S1/2=24/25
S=48/25