Tính quy luật của: A=1/7+ 1/9+ 1/247+ …+1/1147
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(A=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(A=1+\frac{1}{7}-\frac{1}{7}+\frac{1}{13}-\frac{1}{13}+\frac{1}{19}-\frac{1}{19}+\frac{1}{25}-\frac{1}{25}+\frac{1}{31}-\frac{1}{31}+\frac{1}{37}\)
\(A=\frac{1}{7}+\frac{1}{37}\)
\(A=\frac{44}{259}\)
P/s : Đề bn ghi thiếu nha, còn có 1/475 nữa ( xem đầu phần giải của mình )
#~Will~be~Pens~#
1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
Đặt A=1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
A=1/(1.7)+1/(7.13)+1/(13.19)+...+1/(31...
A=(1/6)x( 1 - 1/7 + 1/7 - 1/13 +... +1/31-1/37)
A=(1/6)x(1-1/37)
A=(1/6)x(36/37)
A=6/37
A=\(\frac{1}{1.7}+\frac{1}{7.13}+...+\frac{1}{31.37}\)= \(\frac{1}{6}.\)(\(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{31.37}\))=\(\frac{1}{6}.\)(\(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{31}-\frac{1}{37}\)) = \(\frac{1}{6}.\left(\frac{1}{1}-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
ĐS: A=6/37
em làm như sau nhé : :)))
6A= 6/7 + 6/91+...+ 6/1147
<=>6A= 6/7+1/7-1/13+1/13-1/19+...+1/31-1/37
<=> 6A= 6/7+1/7 -1/37
<=> A=6/37
D = 1/7 + 1/91 + 1/247 + 1/475 + 1/775 + 1/1147
=\(\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
=\(\frac{1}{6}.\frac{6}{1.7}+\frac{1}{6}.\frac{6}{7.13}+\frac{1}{6}.\frac{6}{13.19}+\frac{1}{6}.\frac{6}{19.25}+\frac{1}{6}.\frac{6}{25.31}+\frac{1}{6}.\frac{6}{31.37}\)
=\(\frac{1}{6}\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{31.37}\right)\)
=\(\frac{1}{6}\left(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)
=\(\frac{1}{6}\left(\frac{1}{1}-\frac{1}{37}\right)\)
=\(\frac{1}{6}\left(\frac{37}{37}-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
\(D=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(=\frac{1}{6}\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{31.37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
\(=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+.......+\frac{1}{31.37}=\frac{1-\frac{1}{37}}{6}\)
=1/1×7+1/7×13+1/13×19+...+1/31×37
=1/6×(1-1/7)+1/6×(1/7-1/13)+1/6×(1/13-1/19)+...+1/6×(1/31-1/37)
=1/6×(1-1/7+1/7-1/13+1/13-1/19+...+1/31-1/37)
=1/6×(1-1/37)
=1/6×36/37
=6/37
Ta có : \(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+...+\frac{1}{1147}\)
\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+...+\frac{1}{31\cdot37}\)
\(=\frac{1}{6}\cdot\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+...+\frac{6}{31\cdot37}\right)\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\frac{36}{37}=\frac{6}{37}\)
Vậy \(A=\frac{6}{37}\)