Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1 , 2, 3 ,4 ,5 , 6 ,7, không có 2 số nào mà một số chia hết cho số còn lại .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ các chữ số 1,2,3,4,5,6,7 lập tất cả các số tự nhiên có 7 chữ số trong đó mỗi chữ số trên đều có mặt. Chứng minh rằng tổng tất cả các số đó chia hết cho 9.
Số các số lập được: 7x6x5x4x3x2x1 = 5040 (số)
Tổng các chữ số của mỗi số là: 7+6+5+4+3+2+1 = 28.
Tổng các chữ số của 5040 số đó là:
28 x 5040 = 141 120
Số 141 120 có tổng các chữ số là 9.
Chia hết cho 9 nên Tổng các số đó chia hết cho 9
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Từ 1->7 nếu lập thành 1 số thì sẽ luôn có số dư là 1 khi chia 9 vì 1+2+...+7=28 chia 9 dư 1
Vậy ta không thể có tổng một số số lập được = tổng của các số còn lại lập đc
Lần sau viết rõ cái đề vs
Từ các chữ số 1,2,3,4,5,6,7 lập tất cả các số tự nhiên có 7 chữ số trong đó mỗi chữ số trên đều có mặt. Chứng minh rằng tổng tất cả các số đó chia hết cho 9.
Số các số lập được: 7x6x5x4x3x2x1 = 5040 (số)
Tổng các chữ số của mỗi số là: 7+6+5+4+3+2+1 = 28.
Tổng các chữ số của 5040 số đó là:
28 x 5040 = 141 120
Số 141 120 có tổng các chữ số là 9.
Chia hết cho 9 nên Tổng các số đó chia hết cho 9
Đọc nhầm đề, thế bài này phải là Nguyên lý Đỉíchlê