Cho \(x^2-2x+3-m=0\)
Tìm m để \(3x^2_1+\left(m+1\right)x_2^2=16_{_{ }}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=1-4m>0\Rightarrow m< \dfrac{1}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)
\(\left(x_1^2+x_2+m\right)\left(x_2^2+x_1+m\right)=m^2-m-1\)
\(\Leftrightarrow\left[x_1\left(x_1+x_2\right)-x_1x_2+x_2+m\right]\left[x_2\left(x_1+x_2\right)-x_1x_2+x_1+m\right]=m^2-m-1\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1+x_2\right)=m^2-m-1\)
\(\Leftrightarrow m^2-m-1=1\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2>\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)
1: \(\Delta=2^2-4\cdot1\left(m-1\right)\)
\(=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(x_1^3+x_2^3-6x_1x_2=4\left(m-m^2\right)\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)
=>\(\left(-2\right)^3-3\cdot\left(-2\right)\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
=>\(-8+6\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
=>\(4\left(m^2-m\right)=8\)
=>\(m^2-m=2\)
=>\(m^2-m-2=0\)
=>(m-2)(m+1)=0
=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
2: \(x_1^2+2x_2+2x_1x_2+20=0\)
=>\(x_1^2-x_2\left(x_1+x_2\right)+2x_1x_2+20=0\)
=>\(x_1^2-x_2^2+x_1x_2+20=0\)
=>\(\left(x_1-x_2\right)\left(x_1+x_2\right)+m-1+20=0\)
=>\(-2\left(x_1-x_2\right)=-m-19\)
=>2(x1-x2)=m+19
=>\(x_1-x_2=\dfrac{1}{2}\left(m+19\right)\)
=>\(\left(x_1-x_2\right)^2=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(-2\right)^2-4\left(m-1\right)=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(4-4m+4=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(m+19\right)^2=4\left(-4m+8\right)=-16m+32\)
=>\(m^2+38m+361+16m-32=0\)
=>\(m^2+54m+329=0\)
=>\(\left[{}\begin{matrix}m=-7\left(nhận\right)\\m=-47\left(nhận\right)\end{matrix}\right.\)
\(x^2+3x+m-1=0\left(1\right)\)
Thay \(m=3\) vào \(\left(1\right)\)
\(\Rightarrow x^2+3x+3-1=0\)
\(\Rightarrow x^2+3x+2=0\)
\(\Rightarrow x^2+x+2x+2=0\)
\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy \(S=\left\{-2;-1\right\}\) khi \(m=3\)
a: Khi m=-1 thì pt sẽ là \(x^2-\left(-1+2\right)x-\left(-1\right)-3=0\)
\(\Leftrightarrow x^2-x-2=0\)
=>x=2 hoặc x=-1
b: \(\Delta=\left(m+2\right)^2-4\left(-m-3\right)\)
\(=m^2+4m+4+4m+12\)
\(=m^2+8m+16=\left(m+4\right)^2\)
=>Phương trình luôn có hai nghiệm
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2>1\)
\(\Leftrightarrow\left(m+2\right)^2-2\left(-m-3\right)>1\)
\(\Leftrightarrow m^2+4m+4+2m+6-1>0\)
\(\Leftrightarrow\left(m+3\right)^2>0\)
=>m<>-3
Ta có:
\(a-b+c=4-\left(m^2+2m-15\right)+\left(m+1\right)^2-20\)
\(=-m^2-2m+19+m^2+2m+1-20\)
\(=0\)
\(\Rightarrow\) Phương trình đã cho luôn luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=-1\\x=\dfrac{20-\left(m+1\right)^2}{4}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=5-\dfrac{\left(m+1\right)^2}{4}\end{matrix}\right.\)
\(\Rightarrow1+5-\dfrac{\left(m+1\right)^2}{4}+2019=0\)
\(\Leftrightarrow\left(m+1\right)^2=8100\Rightarrow\left[{}\begin{matrix}m+1=90\\m+1=-90\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=89\\m=-91\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x_1=5-\dfrac{\left(m+1\right)^2}{4}\\x_2=-1\end{matrix}\right.\)
\(\Rightarrow\left[5-\dfrac{\left(m+1\right)^2}{4}\right]^2-1+2019=0\)
\(\Leftrightarrow\left[5-\dfrac{\left(m+1\right)^2}{4}\right]^2+2018=0\) (vô nghiệm do vế trái luôn dương)
Vậy \(\left[{}\begin{matrix}m=89\\m=-91\end{matrix}\right.\)
Ta có: \(\Delta'=1+m\) nên pt có 2 nghiệm x1, x2 khi và chỉ khi \(m\ge-1\)
Theo đề bài và hệ thức Vi-et ta có: \(\hept{\begin{cases}m=x_2^2-2x_2+3\\x_1+x_2=2\end{cases}}\)
Do đó \(A=3x_1^2+\left(m+1\right)x_2^2=16\)
\(\Leftrightarrow\) \(3\left(2-x_2\right)^2+\left(x_2^2-2x_2+4\right)x_2^2=16\)
\(\Leftrightarrow\) \(x_2^4-2x_2^3+7x_2^2-12x_2-4=0\)
\(\Leftrightarrow\) \(\left(x_2-2\right)\left(x^3+7x+2\right)=0\)
Tìm được 2 giá trị của x2 sau đó thay vào tìm m, nhớ đối chiếu với ĐK \(m\ge-1\)