\(x^2-2x+3-m=0\)

Tìm m để \(3x^2_1+\left(m+1\right)x_2^2=1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Ta có:   \(\Delta'=1+m\)   nên pt có 2 nghiệm x1, x2 khi và chỉ khi   \(m\ge-1\)

Theo đề bài và hệ thức Vi-et ta có:    \(\hept{\begin{cases}m=x_2^2-2x_2+3\\x_1+x_2=2\end{cases}}\)

Do đó   \(A=3x_1^2+\left(m+1\right)x_2^2=16\)

\(\Leftrightarrow\)   \(3\left(2-x_2\right)^2+\left(x_2^2-2x_2+4\right)x_2^2=16\)

\(\Leftrightarrow\)   \(x_2^4-2x_2^3+7x_2^2-12x_2-4=0\)

\(\Leftrightarrow\)   \(\left(x_2-2\right)\left(x^3+7x+2\right)=0\)

Tìm được 2 giá trị của x2 sau đó thay vào tìm m, nhớ đối chiếu với ĐK   \(m\ge-1\)

21 tháng 5 2020

tự làm

3 tháng 6 2017

Xét pt (1) có:

\(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)

= \(4m^2-4m+8\)

= \(\left(2m-1\right)^2+7>0\)

\(\Rightarrow\) Pt (1) luôn có 2 nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\)

\(\Leftrightarrow2-x_2+2x_1-x_1x_2+2-x_1+2x_2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2+2\) \(\Leftrightarrow-\left(x_1+x_2\right)+2\left(x_1+x_2\right)+2-\left(x_1+x_2\right)^2=0\)

\(\Leftrightarrow-\left(x_1+x_2\right)\left[1-2+\left(x_1+x_2\right)\right]+2=0\)

\(\Leftrightarrow-2m\left(2m-1\right)+2=0\)

\(\Leftrightarrow-4m^2+2m+2=0\)

\(\Leftrightarrow\left(m-1\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-1=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy để pt (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\) thì \(m=1\) hoặc \(m=\dfrac{-1}{2}\)

3 tháng 6 2017

\(\Delta\)' = m2 - m + 2 = m2 - 2.m.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) + 2 = \(\left(m-\dfrac{1}{2}\right)^2\) + \(\dfrac{7}{4}\) \(\ge\) \(\dfrac{7}{4}\) > 0

\(\Rightarrow\) phương trình luôn có 2 nghiệm \(\forall\)m

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)

(1 + x1)(2 - x2) + (1 + x2)(2 - x1) = x12 + x22 + 2

2 - x2 + 2x1 - x1x2 + 2 - x1 + 2x2 - x1x2 = (x1 + x2)2 - 2x1x2 + 2

= (x1 + x2)2 - (x1 + x2) - 2 = 0

thay vào ta có : (2m)2 - 2m - 2 = 0

4m2 - 2m - 2 = 0 ta có : a + b + c = 4 - 2 - 2 = 0

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

m1 = 1 ; m2 = \(\dfrac{c}{a}\) = \(-\dfrac{1}{2}\)

vậy m = 1 ; m = \(-\dfrac{1}{2}\) thảo mảng điều kiện bài toán

30 tháng 4 2020

Ta có: \(\frac{c}{a}=-\frac{2}{2}=-1< 0\)

=> Phương trình luôn có 2 ngiệm trái dấu \(x_1;x_2\)

Theo định lí viet: \(x_1x_2=-1;x_1+x_2=\frac{1-m}{2}\)

Ta có: \(\left(x_1+\frac{1}{2}x^2_1-x^3_1\right)\left(x_2+\frac{1}{2}x^2_2-x^3_2\right)=4\)

<=> \(x_1x_2\left(x_1^2-\frac{1}{2}x_1-1\right)\left(x_2^2-\frac{1}{2}x_2-x_2\right)=4\)

<=> \(\left(2x_1^2-x_1-2\right)\left(2x_2^2-x_2-2\right)=-16\)

<=> \(\left(2x_1x_2\right)^2-2x_1^2x_2-4x_1^2-2x_1x_2^2+x_1x_2+2x_2-4x_2^2+2x_2+4=-16\)

<=> \(4+2x_1-4x_1^2+2x_2-1+2x_2-4x_2^2+2x_2+4=-16\)

<=> \(4x_1^2+4x_2^2-4x_1-4x_2=23\)

<=> \(4\left(x_1+x_2\right)^2-4\left(x_1+x_2\right)=15\)

<=> \(\orbr{\begin{cases}x_1+x_2=\frac{5}{2}\\x_1+x_2=-\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1-m}{2}=\frac{5}{2}\\\frac{1-m}{2}=-\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-4\\m=4\end{cases}}\)

Vậy:....