cho phân số \(\frac{2n^2+1}{3}\) (n thuộc N) có giá trị là số nguyên. Chứng minh rằng phân số \(\frac{n}{3}\) và phân số \(\frac{2n+3}{6}\) là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)
=> P/s tối giản
Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)
Từ \(\left(1\right)\): \(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Rightarrow n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow n^4+2n^2+1⋮d\)
\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))
Vì \(d>0\)\(\Rightarrow d=1\)
\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)
\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên
Gọi d là ƯC(n3+2n;n4+3n2+1)
n3+2n chia hết d;n4+3n2+1 chia hết d
n(n3+2n) chia hết d ; n4+3n2+1 chia hết d
n4+2n2 chia hết d; n4+3n2+1 chia hết d
(n4+3n2+1) - (n4+2n2) chia hết d
n2+1 chia hết d
n(n2+1) chia hết d
n3+n chia hết d
(n3+2n)-(n3+n) chia hết d
n chia hết d
n2 chia hết d
(n2+1)-(n2) chia hết cho d
1 chia hết d
d=1
PS tối giản
Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :
+) \(n^3+2n⋮d\)
\(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\) (1)
Và \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản
\(\frac{2n^2+1}{3}\in Z\Rightarrow2n^2+1\text{ chia hết cho }3\Rightarrow2n^2\text{ chia 3 dư 2}\)
\(\Rightarrow n^2\text{ chia 3 dư 1}\Rightarrow n\text{ chia 3 dư 1}\)
\(\Rightarrow n\text{ không chia hết cho 3 }\Rightarrow\frac{n}{3}\text{ tối giản}\)
\(n\text{ chia 3 dư 1 }\Rightarrow2n\text{ chia 3 dư 2}\Rightarrow2n+3\text{ chia 3 dư 2}\)
\(\Rightarrow2n+3\text{ không chia hết cho 3}\Rightarrow2n+3\text{ không chia hết cho 6}\)
\(\Rightarrow\frac{2n+3}{6}\text{ tối giản}\)