Rút gọn:
\(A=\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{2}{7}\right)+...+\left(1-\dfrac{88}{93}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\dfrac{\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{2}{7}\right)+\left(1-\dfrac{3}{8}\right)+...+\left(1-\dfrac{88}{93}\right)}{\dfrac{-1}{12}-\dfrac{1}{14}-\dfrac{1}{16}-...-\dfrac{1}{186}}\)
Gọi dãy là A,phần tử là B. Ta có:
B=\(\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{2}{7}\right)+\left(1-\dfrac{3}{8}\right)+...+\left(1-\dfrac{88}{93}\right)\)
B=\(\dfrac{5}{6}+\dfrac{5}{7}+\dfrac{5}{8}+...+\dfrac{5}{93}\)
B=5.\(\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+...+\dfrac{1}{93}\right)\)
B=5.\(\left[\dfrac{2}{2}.\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+...+\dfrac{1}{93}\right)\right]\)
B=5.\(\left[2.\left(\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+...+\dfrac{1}{186}\right)\right]\)
B=10.\(\left(\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+...+\dfrac{1}{186}\right)\)
⇒A=\(\dfrac{10.\left(\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+...+\dfrac{1}{186}\right)}{\dfrac{-1}{12}+\dfrac{-1}{14}+\dfrac{-1}{16}+...+\dfrac{-1}{186}}\)
⇒A=-10
Chúc bạn học tốt!
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
Lời giải:
\(A=\frac{6!}{(m-2)(m-3)}\left[\frac{m!}{(m-4)!.5!}-\frac{m!}{(m-4)!3.4!}\right]\)
\(=\frac{6!}{(m-2)(m-3)}.\frac{m!}{(m-4)!}(\frac{1}{5!}-\frac{1}{3.4!})=\frac{-4}{(m-2)(m-3)}.\frac{m!}{(m-4)!}\)
\(=\frac{-4}{(m-2)(m-3)}.(m-3)(m-2)(m-1)m=-4m(m-1)\)
a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{2}{3}\)
đk : \(x\ge0,x\ne1\)
\(=>P=\left[\dfrac{2\left(\sqrt{x}+2\right)-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]:\left[\dfrac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]\)
\(P=\left[\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right].\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\right]\)
\(P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b,\(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) thay vào P
\(=>P=\dfrac{2\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}=\dfrac{2\sqrt{5}-3}{\sqrt{5}}\)
c,\(=>\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}=>2x-\sqrt{x}=\sqrt{x}+1\)
\(=>2x-2\sqrt{x}-1=0< =>2\left(x-\sqrt{x}-\dfrac{1}{2}\right)=0\)
\(=>x-\sqrt{x}-\dfrac{1}{2}=>\Delta=1-4\left(-\dfrac{1}{2}\right)=3>0=>\left[{}\begin{matrix}x1=\dfrac{1+\sqrt{3}}{2}\\x2=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
đối chiếu đk loại x2 còn x1 thỏa