S = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2009+2010+2011}\) Tính S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 +...+ 1/2010.2011 - 1/2011.2012
S=1/1.2 - 1/2011.2012<1/2
=>S<P
s=1/1*2-1/2*3+1/2*3-1/3*4+....+1/2009*2010-1/210*2011
=1/1*2-1/2010*2011
<1/1*2
\(S=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2009\cdot2010\cdot2011}\)
\(S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}-\frac{1}{2010\cdot2011}\)
\(S=\frac{1}{1\cdot2}-\frac{1}{2010\cdot2011}\)
\(S=\frac{1}{2}-\frac{1}{2010\cdot2011}< \frac{1}{2}\)
=> S < P
Lời giải: Sử dụng hằng đẳng thức \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\) ta có:
Sn=\(\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{2\times3}\right]+\frac{1}{2}\left[\frac{1}{2\times3}-\frac{1}{3\times4}\right]+...\)\(+\frac{1}{2}\left[\frac{1}{\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
\(=\frac{1}{2}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
Tính:
S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+...+\frac{1}{98.99.100}\)
\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2S=\frac{1}{2}-\frac{1}{9900}\)
\(2S=\frac{4949}{9900}\)
\(S=\frac{4949}{19800}\)
Ta xét : \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)
\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)
...
\(\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)
Ta có : 2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
=> 2S = \(\frac{1}{1.2}-\frac{1}{99.100}\)
=> 2S = \(\frac{4949}{9900}\)
=> S = \(\frac{4949}{19800}\)
\(S:3.2=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{98.99.100}\)
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)
\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)
Tương tự nhé ta có
\(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
\(S=\frac{4949}{6600}\)
\(A=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
\(A=2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=2.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(A=2\cdot\frac{4949}{9900}=\frac{4949}{4950}\)
\(S=2\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2009.2010}-\frac{1}{2010.2011}\right)\)
\(S=2\left(\frac{1}{1.2}-\frac{1}{2010.2011}\right)\)
\(S=1-\frac{2}{4042110}=1-\frac{1}{2021055}=\frac{2021054}{2021055}\)
S=2(1/1x2-1/2x3+1/2x3-1/2x3+1/3x4-1/4x5+....+1/2009x2010-1/2010x2011)
S=2(1/2-1/2010x2011)
tự tính nốt
cái quan trọng nhất là ko đc sai đề bn có hỉu ko