Tính nhanh:
5/1×4+5/4×7+.....+5/2014×2017
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 x 2/3 x 3/4 x 4/5 x 5/6 x ... x 2013/2014 x 2014/2015 x 2015/2016
= 1/2016 (giản ước hết ta đc mẫu số đầu tiên và tử số cuối cùng)
1/2 × 2/3 × 3/4 × .... × 2014/2015 × 2015/2016
= 1 × 2 × 3 × ... × 2014 × 2015 / 2 × 3 × 4 × ... × 2015 × 2016 ( Nhân tử với tử/ mẫu với mẫu )
= 1/ 2016
A = 12 - 22 + 32 - 42 + 52 - 62 + 72 - .......- 582 + 592
A = 12 + ( 32 - 22) + ( 52 - 42) + (72 - 62) +....+ ( 592 - 582)
A = 1 + ( 3-2)(2+3) + (5-4)(4+5) + (7-6)(6+7)+....+(59-58)(58+59)
A = 1 + 2 + 3 + 4 + 5 + 6 + 7 + ....+ 58 + 59
A = ( 59 + 1).{ (59 - 1): 1 + 1 } : 2
A = 1770
B = \(\dfrac{2^{2016}-2^{2015}+2^{2014}-2^{2013}+2^{2012}-2^{2011}+2^{2010}-2^{2009}}{2^{2008}}\)
Đặt tử số là A
ta có
A = 22016 - 22015+22014 - 22013 + 22012 - 22011 + 22010- 22009
2 A= 22017- 22016 + 22015- 22014 +22013-22012 + 22011 - 22010
2A + A = 22017 - 22009
3A = 22017 - 22009
A = (22017 - 22009):3
B = A : 8 = (22017- 22009) : 3 : 8
B = (22017 - 22009) : 24
= \(\frac{1}{2}\)- \(\frac{2}{3}\)+ (\(\frac{3}{4}\)- \(\frac{3}{4}\)) + ( -\(\frac{4}{5}\)+ \(\frac{4}{5}\)) + ( \(\frac{5}{6}-\frac{5}{6}\)) - \(\frac{6}{7}\)
= \(\frac{1}{2}-\frac{2}{3}-0-0-0-\frac{6}{7}\)
= \(\frac{1}{2}-\frac{2}{3}-\frac{6}{7}\)
=\(\frac{21}{42}-\frac{28}{42}-\frac{36}{42}\)
= \(\frac{-43}{42}\)
Ta có: \(1\frac{4}{5}+2\frac{5}{7}+3\frac{4}{5}+4\frac{5}{7}\)
\(=\left(1\frac{4}{5}+3\frac{4}{5}\right)+\left(2\frac{5}{7}+4\frac{5}{7}\right)\)
\(=\left(\frac{9}{5}+\frac{19}{5}\right)+\left(\frac{19}{7}+\frac{33}{7}\right)\)
\(=\frac{28}{5}+\frac{52}{7}=13\frac{1}{35}\)
= ( \(1\frac{4}{5}\)+ \(3\frac{4}{5}\)) + ( \(2\frac{5}{7}\)+ \(4\frac{5}{7}\))
= \(4\frac{4}{5}\) + \(6\frac{5}{7}\)
= \(\frac{24}{5}\) + \(\frac{47}{7}\)
= ...... ( tính nốt nhé )
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
B=1+2+(-3)+(-4)+5+6+(-7)+(-8)+...+2013+2014+(-2015)+(-2016)
B=(-4)+(-4)+...+(-4)
B=(-4).1008 (1008 vi co 1008 so (-4))
B=-4032
**** NHE
B = 1 + 2 + ( -3 ) + ( -4 ) + 5 + 6 + ( -7 ) + ( -8 ) +... + 2013 + 2014 + ( -2015 ) + ( -2016 )
B = 1 +[ 2 + ( -3 )] +[ ( -4 ) + 5] +[ 6 + ( -7 )] + [( -8 ) +9]+[10 +(-11)]+...+[(-2012)+2013]+ [2014 + ( -2015 ) ]+ ( -2016 )
B=[ 1 (-1) ] + [ 1 +( -1)] +[1 +(-1)] +...+[ 1 + (-1)] +(-2016)
B=0 + 0 0 +...+ 0 +(-2016)
B= -2016
\(\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+...+\frac{5}{2014\cdot2017}\)
\(=\frac{5}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{2014\cdot2017}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{2017}\right)\)
\(=\frac{5}{3}\cdot\frac{2016}{2017}=\frac{10080}{6051}=1\frac{4029}{6051}\)
\(S=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{2014.2017}\)
\(S=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(S=5.3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(S=15.\left(\frac{1}{1}-\frac{1}{2017}\right)=15\cdot\frac{2016}{2017}=\frac{30240}{2017}\)