Cho hai đa thức A(x)=-2x²+3x⁵+x⁴+x+x² B(x)=-2x²+x-2-x⁴+3x²3x⁵ a) thu gọn và sắp xếp hai đa thức trên Theo lũy thừa giảm dần của biến. b) tìm đa thức M(x) sao cho B(x)=A(x)+M(x) . Tìm bậc và hệ số cao nhất của đa thức M(x). c) Tìm nhiệm của đa thức N(x) biết A(x)°N(x)-B(x). Help me :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
`P(x)=5x^3 - 3x+7 -x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
`b,`
`-5x^3+2x-3+2x-x^2-2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
`b,`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
`N(x)=(5x^3-4x+7)-(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7+5x^3+x^2-4x+5`
`= (5x^3+5x^3)+x^2+(-4x-4x)+(7+5)`
`= 10x^3+x^2-8x+12.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2
N(x)=5x^3-4x+7+5x^3+x^2-4x+5=10x^3+x^2-8x+12
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1%
1 năm sau tăng: 4000x2,1%= 82 người
Số dân sau 1 năm: 4000+82=4082 người
b/ Tương tự tỉ lệ tăng: 15:1000=1,5%
Số dân sau 1 năm: 4000x1,5%+4000=4060 người
a,P(\(x\)) = \(x^3\) - 2\(x\) + 6 + 3\(x\)4 - \(x\) + 2\(x\)3 - 2\(x\)2
P(\(x\)) = (\(x^3\) + 2\(x^3\)) - ( 2\(x\) + \(x\) ) + 6 + 3\(x^4\) - 2\(x^2\)
P(\(x\)) = 3\(x^3\) - 3\(x\) + 6 + 3\(x^4\)- 2\(x^2\)
P(\(x\) )= 3\(x^4\) + 3\(x^3\) - 2\(x^2\) - 3\(x\) + 6
Q(\(x\)) = \(x^3\) - 7 + 2\(x^2\) + 3\(x\) - 9\(x^2\) - 2 - 4\(x^3\)
Q(\(x\)) = (\(x^3\) - 4\(x^3\)) - ( 7 + 2) - (9\(x^2\) - 2\(x^2\)) + 3\(x\)
Q(\(x\)) = -3\(x^3\) - 9 - 7\(x^2\) + 3\(x\)
Q(\(x\)) = -3\(x^3\) - 7\(x^2\) + 3\(x\) - 9
Bậc cao nhất của P(\(x\)) là 4; hệ số cao nhất là: 3; hệ số tự do là 6
Bậc cao nhất của Q(\(x\)) là 3; hệ số cao nhất là -3; hệ số tự do là -9
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
A(x) + B(x) = x4 - 3x + 3 + x4 - x + 128
A(x) +B(x) = (x4 + x4) - (3x+x) +( 3 +128)
A(x) + B(x) = 2x4 - 4x + 131
A(x) -B(x) = x4 - 3x + 3 - (x4 - x + 128)
A(x) -B(x) = x4 - 3x + 3 - x4 + x - 128
A(x) - B(x) = (x4 - x4) - (3x - x) - ( 128 - 3)
A(x) - B(x) = 0 - 2x - 125
A(x) - B(x) = -2x - 125
A(x) = x4 + 3 - 3x
A(x) = x4 - 3x + 3
B(x) = 53 + 3 - 3x2 + x4 - 2x + 3x2 + x
B(x) = (125 + 3) - ( 3x2 - 3x2) + x4 -( 2x - x)
B(x) = 128 - 0 + x4 - x
B(x) = x4 - x + 128
b, A(2) = 24 - 3 \(\times\) 2 + 3
A(2) = 16 - 6 + 3
A(2) = 10 + 3
A(2) = 13
a) Ta có:
\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)
\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
b) Bậc của đa thức f(x) là 5
c) Ta có:
\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.
\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.
a: A(x)=3x^5+x^4-x^2+x
B(x)=3x^5-x^4+x^2+x-2
b: M(x)=B(x)-A(x)
=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x
=-2x^4+2x^2+2x-2