K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A(x)=3x^5+x^4-x^2+x

B(x)=3x^5-x^4+x^2+x-2

b: M(x)=B(x)-A(x)

=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x

=-2x^4+2x^2+2x-2

 

`a,`

`P(x)=5x^3 - 3x+7 -x`

`= 5x^3+(-3x-x)+7`

`= 5x^3-4x+7`

`b,`

`-5x^3+2x-3+2x-x^2-2`

`= -5x^3-x^2+(2x+2x)+(-3-2)`

`= -5x^3-x^2+4x-5`

`b,`

`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`

`= 5x^3-4x+7-5x^3-x^2+4x-5`

`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`

`= -x^2+2`

 

`N(x)=(5x^3-4x+7)-(-5x^3-x^2+4x-5)`

`= 5x^3-4x+7+5x^3+x^2-4x+5`

`= (5x^3+5x^3)+x^2+(-4x-4x)+(7+5)`

`= 10x^3+x^2-8x+12.`

a: P(x)=5x^3-4x+7

Q(x)=-5x^3-x^2+4x-5

b: M(x)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2

N(x)=5x^3-4x+7+5x^3+x^2-4x+5=10x^3+x^2-8x+12

1:

a: f(x)=2x^4+2x^3+2x^2+5x+6

g(x)=x^4-2x^3-x^2-5x+3

c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9

K(x)=f(x)-2g(x)-4x^2

=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2

=6x^3+15x

c: K(x)=0

=>6x^3+15x=0

=>3x(2x^2+5)=0

=>x=0

d: H(x)=3x^4+x^2+9>=9

Dấu = xảy ra khi x=0

2 tháng 5 2022

a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)

\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)

 

 

 

2 tháng 5 2022

rối lắm luôn

20 tháng 8 2015

1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1% 
1 năm sau tăng: 4000x2,1%= 82 người 
Số dân sau 1 năm: 4000+82=4082 người 
b/ Tương tự tỉ lệ tăng: 15:1000=1,5% 
Số dân sau 1 năm: 4000x1,5%+4000=4060 người

18 tháng 4 2016

P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8

Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5

ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm

Xét M(x)=0 suy ra...........

N(x)=5x+3

Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm

5 tháng 4 2023

a,P(\(x\)) =  \(x^3\) - 2\(x\) + 6 + 3\(x\)4 - \(x\) + 2\(x\)3 - 2\(x\)2

   P(\(x\)) = (\(x^3\) + 2\(x^3\)) - ( 2\(x\) + \(x\) ) + 6 + 3\(x^4\) - 2\(x^2\)

   P(\(x\))  = 3\(x^3\) - 3\(x\) + 6 + 3\(x^4\)- 2\(x^2\)

   P(\(x\) )= 3\(x^4\) + 3\(x^3\) - 2\(x^2\) - 3\(x\) + 6

    Q(\(x\)) = \(x^3\) -  7 + 2\(x^2\) + 3\(x\) - 9\(x^2\) - 2 - 4\(x^3\)

   Q(\(x\)) =  (\(x^3\) - 4\(x^3\)) - ( 7 + 2) - (9\(x^2\) - 2\(x^2\)) + 3\(x\)

   Q(\(x\)) = -3\(x^3\) - 9 - 7\(x^2\) + 3\(x\)

  Q(\(x\)) = -3\(x^3\) - 7\(x^2\) + 3\(x\) - 9

Bậc  cao nhất của P(\(x\)) là 4; hệ số cao nhất là: 3; hệ số tự do là 6

Bậc cao nhất của Q(\(x\)) là 3; hệ số cao nhất là -3; hệ số tự do là -9

 

 

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm

14 tháng 4 2023

A(x) + B(x) = x4 - 3x + 3 + x4 - x + 128

A(x) +B(x) = (x4 + x4) - (3x+x) +( 3 +128)

A(x) + B(x) = 2x4 - 4x + 131

A(x) -B(x) = x4 - 3x + 3 - (x4 - x + 128)

A(x) -B(x) = x4 - 3x + 3 - x4 + x - 128

A(x) - B(x) = (x - x4) - (3x - x)  - ( 128 - 3)

A(x) - B(x) = 0 - 2x - 125

A(x) - B(x) = -2x - 125

 

14 tháng 4 2023

 A(x) =  x4 + 3 - 3x

   A(x) = x4 - 3x + 3

 B(x) = 53 + 3 - 3x2 + x4 - 2x + 3x2 + x

   B(x) = (125 + 3) - ( 3x2 - 3x2) + x4 -( 2x - x)

   B(x) = 128 - 0 + x4 - x

B(x) = x4 - x + 128 

b, A(2) = 24 - 3 \(\times\) 2 + 3

   A(2) = 16 - 6 + 3

  A(2) = 10 + 3

  A(2) = 13

 

 

20 tháng 3 2023

a) Ta có:

\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)

\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

b) Bậc của đa thức f(x) là 5

c) Ta có:

\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.

\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.