K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: BC vuông góc BA

BC vuông góc SA

=>BC vuông góc (SAB)

b: Kẻ BK vuông góc AC, BH vuông góc SK

=>BH=d(B;(SAC))

\(AC=\sqrt{BA^2+BC^2}=5a\)

AK=(4a)^2/5a=3,2a

BK=4a*3a/5a=2,4a

\(SB=\sqrt{2a^2+16a^2}=3a\sqrt{2}\)

SK=căn 2a^2+10,24a^2=a*3căn 34/5

BK=2,4a

SK^2+BK^2=SB^2

nên ΔSKB vuông tại K

=>K trùng với H

=>d(B;(SAC))=BK=2,4a

NV
20 tháng 4 2023

Trong mp (SAC), từ A kẻ \(AD\perp SC\) (D thuộc SC) (1)

Trong mp (ABC), qua A kẻ đường thẳng vuông góc AC cắt BC kéo dài tại E

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp AE\\AE\perp AC\end{matrix}\right.\) \(\Rightarrow AE\perp\left(SAC\right)\Rightarrow\left\{{}\begin{matrix}AE\perp AE\\AE\perp SC\left(2\right)\end{matrix}\right.\) 

(1);(2) \(\Rightarrow SC\perp\left(ADE\right)\)

Mà \(SC=\left(SAC\right)\cap\left(SBC\right)\Rightarrow\widehat{ADE}\) là góc giữa (SAC) và (SBC)

\(AC=\sqrt{AB^2+BC^2}=2a\)

Hệ thức lượng: \(\dfrac{1}{AD^2}=\dfrac{1}{SA^2}+\dfrac{1}{AC^2}\Rightarrow AD=\dfrac{2a\sqrt{33}}{11}\)

\(\dfrac{1}{AB^2}=\dfrac{1}{AC^2}+\dfrac{1}{AE^2}\Rightarrow AE=\dfrac{AB.AC}{\sqrt{AC^2-AB^2}}=\dfrac{2a\sqrt{3}}{3}\)

\(\Rightarrow tan\widehat{ADE}=\dfrac{AE}{AD}=...\)

NV
20 tháng 4 2023

loading...

23 tháng 3 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi d là khoảng cách từ E đến mặt phẳng (SAB)

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Kết hợp với kết quả trong câu a)

ta suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12

26 tháng 11 2017

a: (SAB) và (SAC) cùng vuông góc (ABC)

(SAB) cắt (SAC)=SA

=>SA vuông góc (ABC)

b: SA vuông góc CH

CH vuông góc AB

=>CH vuông góc (SAB)

=>(SCH) vuông góc (SAB)

20 tháng 5 2017

Khối đa diện

Khối đa diện

1 tháng 2 2018

Đáp án D

9 tháng 10 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)

⇒ BC ⊥ SB.

⇒ tam giác SBC vuông tại B.

b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)

⇒ (SBH) ⊥ (SAC).

c) d[B, (SAC)] = BH. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

NV
14 tháng 1

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow BC\perp\left(SAB\right)\)

b.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\BH\in\left(ABC\right)\end{matrix}\right.\) \(\Rightarrow SA\perp BH\)

Lại có \(BH\perp AC\) (do BH là đường cao)

\(\Rightarrow BH\perp\left(SAC\right)\)

Mà \(SC\in\left(SAC\right)\)

\(\Rightarrow BH\perp SC\)