cho a là số nguyên .chứng tỏ m= a/3+a2/2+a3/6 cũng là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2).
Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2)
<=> S = 0 (mod 2) (đpcm).
a)
a,b là ước của 6 thì \(\left\{{}\begin{matrix}a=6n\\b=6m\end{matrix}\right.\left(n,m\in N\right)\)
\(a.b=360\Leftrightarrow6n.6m=360\Leftrightarrow n.m=10=2.5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}n=2\\m=5\end{matrix}\right.\\\left\{{}\begin{matrix}n=5\\m=2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\Rightarrow a=12\\n=5\Rightarrow a=30\end{matrix}\right.\)
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn
\(M=\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}=\frac{a^3-a+3a+3a^2}{6}=\frac{a\left(a-1\right)\left(a+1\right)+3a\left(a+1\right)}{6}\)
Vì \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số nguyên liên tiếp => \(a\left(a-1\right)\left(a+1\right)⋮2\) và \(3\)
Mà \(\left(2;3\right)=1\) \(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\) (1)
Vì \(a\left(a+1\right)\) là tích 2 số tự nhiên tiếp tiếp => \(a\left(a+1\right)⋮2\)
\(\Rightarrow3a\left(a+1\right)⋮6\) (2)
Từ (1) ; (2) \(\Rightarrow a\left(a-1\right)\left(a+1\right)+3a\left(a+1\right)⋮6\)
Hay \(\frac{a\left(a-1\right)\left(a+1\right)+3a\left(a+1\right)}{6}\) là số nguyên
\(\Rightarrow M=\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) là số nguyên (đpcm)
bài này gõ dài lắm nên bạn gợi ý chút xíu nha
mình có bài tương tự