K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2023

\(\dfrac{2x+1}{6}=\dfrac{3-x}{9}\)

\(\Leftrightarrow9\left(2x+1\right)=6\left(3-x\right)\)

\(\Leftrightarrow18x+9=18-6x\)

\(\Leftrightarrow24x=9\)

\(\Leftrightarrow x=\dfrac{3}{8}\)

`@` `\text {Ans}`

`\downarrow`

\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)

`=> (x-3)5 = (2x+1)3`

`=> 5x-15 = 6x+3`

`=> 5x-6x = 15+3`

`=> -x=18`

`=> x=-18`

\(\dfrac{x+1}{22}=\dfrac{6}{x}\)

`=> (x+1)x = 22*6`

`=> (x+1)x = 132`

`=> x^2 + x = 132`

`=> x^2+x-132=0`

`=> (x-11)(x+12)=0`

`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)

\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)

`=> (2x-1)x = 2*5`

`=> 2x^2 - x =10`

`=> 2x^2 - x - 10 =0`

`=> 2x^2 + 4x - 5x - 10 =0`

`=> (2x^2 + 4x) - (5x+10)=0`

`=> 2x(x+2) - 5(x+2)=0`

`=> (2x-5)(x+2)=0`

`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)

\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)

`=> (2x-1)(2x+1)=21*3`

`=> 4x^2 + 2x - 2x - 1 = 63`

`=> 4x^2 - 1=63`

`=> 4x^2 - 1 - 63=0`

`=> 4x^2 - 64 = 0`

`=> 4(x^2 - 16)=0`

`=> 4(x^2 + 4x - 4x - 16)=0`

`=> 4[(x^2+4x)-(4x+16)]=0`

`=> 4[x(x+4)-4(x+4)]=0`

`=> 4(x-4)(x+4)=0`

`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)

`=> (2x+1)(x+1) = 9*5`

`=> (2x+1)(x+1)=45`

`=> 2x^2 + 2x + x + 1 = 45`

`=> 2x^2 + 3x + 1 =45`

`=> 2x^2 + 3x + 1 - 45 =0`

`=> 2x^2+3x-44=0`

`=> 2x^2 + 11x - 8x - 44=0`

`=> (2x^2 +11x) - (8x+44)=0`

`=> x(2x+11) - 4(2x+11)=0`

`=> (x-4)(2x+11)=0`

`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)

15 tháng 6 2023

\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)

\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)

\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)

 

 

15 tháng 8 2023

\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)

\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)

Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)

a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)

=>x+6<0

=>x<-6

b: ĐKXĐ: (-2)/(6-x)>=0

=>6-x<0

=>x>6

c: ĐKXĐ: (-x+3)/(-6)>=0

=>-x+3<=0

=>-x<=-3

=>x>=3

d: ĐKXĐ: (7x-1)/-9>=0

=>7x-1<=0

=>x<=1/7

e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0

=>x+2>=0

=>x>=-1

f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0

=>x-2>=0

=>x>=2

20 tháng 2 2021

a, \(\dfrac{6}{x-3}=\dfrac{9}{2x-7}\)

=> 6(2x-7) = 9(x-3)

=> 12x - 42 = 9x - 27

=> 12x - 9x = -27 + 42

=> 3x = 15 

=> x = 5

Vậy x = 5

b, \(\dfrac{-7}{x+1}=\dfrac{6}{x+27}\)

=> -7(x + 27) = 6(x + 1)

=> -7x - 189 = 6x + 6

=> -7x - 6x = 6 + 189

=> -13x = 195

=> x = -15

Vậy x = -15

a) Ta có: \(\dfrac{6}{x-3}=\dfrac{9}{2x-7}\)

\(\Leftrightarrow6\left(2x-7\right)=9\left(x-3\right)\)

\(\Leftrightarrow12x-42=9x-27\)

\(\Leftrightarrow12x-9x=-27+42\)

\(\Leftrightarrow3x=15\)

hay x=5

Vậy: x=5

b) Ta có: \(\dfrac{-7}{x+1}=\dfrac{6}{x+27}\)

\(\Leftrightarrow6\left(x+1\right)=-7\left(x+27\right)\)

\(\Leftrightarrow6x+6=-7x+189\)

\(\Leftrightarrow6x+7x=189-6\)

\(\Leftrightarrow13x=183\)

hay \(x=\dfrac{183}{13}\)

Vậy: \(x=\dfrac{183}{13}\)

11 tháng 9 2023

Bài 4: 

a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)

\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)

\(1,25-x=\dfrac{11}{12}\)

\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)

\(x=\dfrac{1}{3}\)

b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)

\(x-\dfrac{7}{6}=\dfrac{13}{12}\)

\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)

\(x=\dfrac{27}{12}=\dfrac{9}{4}\)

c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)

\(4-\left(2x+1\right)=\dfrac{8}{3}\)

\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)

\(2x+1=\dfrac{20}{3}\)

\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)

\(2x=\dfrac{17}{3}\)

\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)

Bài 15:

a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)

\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)

\(=>x=\left(\dfrac{-2}{3}\right)^8\)

b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)

\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)

\(=>x=\left(\dfrac{4}{9}\right)^9\)

c) \(\left(x+4\right)^3=-125\)

\(\left(x+4\right)^3=\left(-5\right)^3\)

\(=>x+4=-5\)

\(x=-5-4\)

\(=>x=-9\)

d) \(\left(10-5x\right)^3=64\)

\(\left(10-5x\right)^3=4^3\)

\(=>10-5x=4\)

\(5x=10-4\)

\(5x=6\)

\(=>x=\dfrac{6}{5}\)

e) \(\left(4x+5\right)^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)

Bài 16:

a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)

\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)

\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)

b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)

\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)

\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)

c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)

\(=\dfrac{7}{4}.\dfrac{-12}{5}\)

\(=\dfrac{-21}{5}\)

\(#Wendy.Dang\)

 

 

11 tháng 9 2023

Uh, chừa sau k dám học muộn nx

8 tháng 9 2023

`P <= 1` là `P` ở đâu cậu nhỉ cộng `A` với `B` lại với nhau à?

8 tháng 9 2023

xin lỗi để mình viết cả bài toán

DT
31 tháng 1 2023

\(< =>\dfrac{13\left(x+3\right)}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-9}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}=\dfrac{6\left(2x+7\right)}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}\left(ĐK:x\ne\left\{-\dfrac{7}{2};3;-3\right\}\right)\\ =>13x+39+x^2-9=12x+42\\ < =>x^2+x-12=0\\ < =>\left(x+4\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x=-4\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\\ =>S=\left\{-4\right\}\)

31 tháng 1 2023

\(ĐKXĐ:x\ne\dfrac{7}{2}\) và \(x\ne\pm3\)

mẫu chung : \(\left(2x+7\right)\left(x+3\right)\left(x-3\right)\)

Khử mẫu ta được :

\(13\left(x+3\right)+\left(x+3\right)\left(x-3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\)

\(x=\left\{{}\begin{matrix}-4\\3\end{matrix}\right.\)

do \(x=3\) không thỏa mãn điều kiện thích hợp nên pt có nghiệm duy nhất là : \(-4\)

\(Vậy...\)

2 tháng 7 2023

1) dư số 9 trước dấu lớn và cái (2) mình xin sửa đề là \(\ge3\).. mới làm được ấy: )

1)

`=>3(2x+1)-2(x-2)>18(x-3)`

`<=>6x+3-2x+4>18x-54`

`<=>-14x>-61`

`=>x<61/14`

2)

`=>12x-3(x-3)>=36-(x-3)`

`<=>12x-3x+9>=36-x+3`

`<=>10x>=30`

`<=>x>=3`

`=> T:3<=x<61/14`

Mà x là các giá trị nguyên nên x thuộc {3; 4}

 

a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

1 tháng 9 2023

\(a,3-x=x+1,8\)

\(\Rightarrow-x-x=1,8-3\)

\(\Rightarrow-2x=-1,2\)

\(\Rightarrow x=0,6\)

\(b,2x-5=7x+35\)

\(\Rightarrow2x-7x=35+5\)

\(\Rightarrow-5x=40\)

\(\Rightarrow x=-8\)

\(c,2\left(x+10\right)=3\left(x-6\right)\)

\(\Rightarrow2x+20=3x-18\)

\(\Rightarrow2x-3x=-18-20\)

\(\Rightarrow-x=-38\)

\(\Rightarrow x=38\)

\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)

\(\Rightarrow8x-3+1=1+6x+x\)

\(\Rightarrow8x-3=7x\)

\(\Rightarrow8x-7x=3\)

\(\Rightarrow x=3\)

\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)

\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)

\(\Rightarrow-2x=\dfrac{10}{9}\)

\(\Rightarrow x=-\dfrac{5}{9}\)

1 tháng 9 2023

\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)

\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)

\(\Rightarrow x=\dfrac{16}{3}\)

\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)

\(\Rightarrow x-4=5-x\)

\(\Rightarrow x+x=5+4\)

\(\Rightarrow2x=9\)

\(\Rightarrow x=\dfrac{9}{2}\)

\(k,7x^2-11=6x^2-2\)

\(\Rightarrow7x^2-6x^2=-2+11\)

\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

\(m,5\left(x+3\cdot2^3\right)=10^2\)

\(\Rightarrow5\left(x+24\right)=100\)

\(\Rightarrow x+24=20\)

\(\Rightarrow x=-4\)

\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)

#\(Urushi\text{☕}\)