\(\dfrac{2x+1}{6}\)=\(\dfrac{3-x}{9}\) tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
`=> (x-3)5 = (2x+1)3`
`=> 5x-15 = 6x+3`
`=> 5x-6x = 15+3`
`=> -x=18`
`=> x=-18`
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
`=> (x+1)x = 22*6`
`=> (x+1)x = 132`
`=> x^2 + x = 132`
`=> x^2+x-132=0`
`=> (x-11)(x+12)=0`
`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
`=> (2x-1)x = 2*5`
`=> 2x^2 - x =10`
`=> 2x^2 - x - 10 =0`
`=> 2x^2 + 4x - 5x - 10 =0`
`=> (2x^2 + 4x) - (5x+10)=0`
`=> 2x(x+2) - 5(x+2)=0`
`=> (2x-5)(x+2)=0`
`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
`=> (2x-1)(2x+1)=21*3`
`=> 4x^2 + 2x - 2x - 1 = 63`
`=> 4x^2 - 1=63`
`=> 4x^2 - 1 - 63=0`
`=> 4x^2 - 64 = 0`
`=> 4(x^2 - 16)=0`
`=> 4(x^2 + 4x - 4x - 16)=0`
`=> 4[(x^2+4x)-(4x+16)]=0`
`=> 4[x(x+4)-4(x+4)]=0`
`=> 4(x-4)(x+4)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
`=> (2x+1)(x+1) = 9*5`
`=> (2x+1)(x+1)=45`
`=> 2x^2 + 2x + x + 1 = 45`
`=> 2x^2 + 3x + 1 =45`
`=> 2x^2 + 3x + 1 - 45 =0`
`=> 2x^2+3x-44=0`
`=> 2x^2 + 11x - 8x - 44=0`
`=> (2x^2 +11x) - (8x+44)=0`
`=> x(2x+11) - 4(2x+11)=0`
`=> (x-4)(2x+11)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)
\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)
\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)
Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)
a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)
=>x+6<0
=>x<-6
b: ĐKXĐ: (-2)/(6-x)>=0
=>6-x<0
=>x>6
c: ĐKXĐ: (-x+3)/(-6)>=0
=>-x+3<=0
=>-x<=-3
=>x>=3
d: ĐKXĐ: (7x-1)/-9>=0
=>7x-1<=0
=>x<=1/7
e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0
=>x+2>=0
=>x>=-1
f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0
=>x-2>=0
=>x>=2
a, \(\dfrac{6}{x-3}=\dfrac{9}{2x-7}\)
=> 6(2x-7) = 9(x-3)
=> 12x - 42 = 9x - 27
=> 12x - 9x = -27 + 42
=> 3x = 15
=> x = 5
Vậy x = 5
b, \(\dfrac{-7}{x+1}=\dfrac{6}{x+27}\)
=> -7(x + 27) = 6(x + 1)
=> -7x - 189 = 6x + 6
=> -7x - 6x = 6 + 189
=> -13x = 195
=> x = -15
Vậy x = -15
a) Ta có: \(\dfrac{6}{x-3}=\dfrac{9}{2x-7}\)
\(\Leftrightarrow6\left(2x-7\right)=9\left(x-3\right)\)
\(\Leftrightarrow12x-42=9x-27\)
\(\Leftrightarrow12x-9x=-27+42\)
\(\Leftrightarrow3x=15\)
hay x=5
Vậy: x=5
b) Ta có: \(\dfrac{-7}{x+1}=\dfrac{6}{x+27}\)
\(\Leftrightarrow6\left(x+1\right)=-7\left(x+27\right)\)
\(\Leftrightarrow6x+6=-7x+189\)
\(\Leftrightarrow6x+7x=189-6\)
\(\Leftrightarrow13x=183\)
hay \(x=\dfrac{183}{13}\)
Vậy: \(x=\dfrac{183}{13}\)
Bài 4:
a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)
\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)
\(1,25-x=\dfrac{11}{12}\)
\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)
\(x=\dfrac{1}{3}\)
b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)
\(x-\dfrac{7}{6}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)
\(x=\dfrac{27}{12}=\dfrac{9}{4}\)
c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)
\(4-\left(2x+1\right)=\dfrac{8}{3}\)
\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)
\(2x+1=\dfrac{20}{3}\)
\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)
\(2x=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)
Bài 15:
a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)
\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)
\(=>x=\left(\dfrac{-2}{3}\right)^8\)
b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)
\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)
\(=>x=\left(\dfrac{4}{9}\right)^9\)
c) \(\left(x+4\right)^3=-125\)
\(\left(x+4\right)^3=\left(-5\right)^3\)
\(=>x+4=-5\)
\(x=-5-4\)
\(=>x=-9\)
d) \(\left(10-5x\right)^3=64\)
\(\left(10-5x\right)^3=4^3\)
\(=>10-5x=4\)
\(5x=10-4\)
\(5x=6\)
\(=>x=\dfrac{6}{5}\)
e) \(\left(4x+5\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)
Bài 16:
a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)
\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)
\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)
b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)
\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)
\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)
c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)
\(=\dfrac{7}{4}.\dfrac{-12}{5}\)
\(=\dfrac{-21}{5}\)
\(#Wendy.Dang\)
\(< =>\dfrac{13\left(x+3\right)}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-9}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}=\dfrac{6\left(2x+7\right)}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}\left(ĐK:x\ne\left\{-\dfrac{7}{2};3;-3\right\}\right)\\ =>13x+39+x^2-9=12x+42\\ < =>x^2+x-12=0\\ < =>\left(x+4\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x=-4\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\\ =>S=\left\{-4\right\}\)
\(ĐKXĐ:x\ne\dfrac{7}{2}\) và \(x\ne\pm3\)
mẫu chung : \(\left(2x+7\right)\left(x+3\right)\left(x-3\right)\)
Khử mẫu ta được :
\(13\left(x+3\right)+\left(x+3\right)\left(x-3\right)=6\left(2x+7\right)\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\)
\(x=\left\{{}\begin{matrix}-4\\3\end{matrix}\right.\)
do \(x=3\) không thỏa mãn điều kiện thích hợp nên pt có nghiệm duy nhất là : \(-4\)
\(Vậy...\)
1) dư số 9 trước dấu lớn và cái (2) mình xin sửa đề là \(\ge3\).. mới làm được ấy: )
1)
`=>3(2x+1)-2(x-2)>18(x-3)`
`<=>6x+3-2x+4>18x-54`
`<=>-14x>-61`
`=>x<61/14`
2)
`=>12x-3(x-3)>=36-(x-3)`
`<=>12x-3x+9>=36-x+3`
`<=>10x>=30`
`<=>x>=3`
`=> T:3<=x<61/14`
Mà x là các giá trị nguyên nên x thuộc {3; 4}
a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
\(\dfrac{2x+1}{6}=\dfrac{3-x}{9}\)
\(\Leftrightarrow9\left(2x+1\right)=6\left(3-x\right)\)
\(\Leftrightarrow18x+9=18-6x\)
\(\Leftrightarrow24x=9\)
\(\Leftrightarrow x=\dfrac{3}{8}\)