K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

\(\frac{2}{2.3}\)\(\frac{2}{3.4}\)\(\frac{2}{4.5}\)+........+ \(\frac{2}{x+\left(x+1\right)}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)\(\frac{1}{4.5}\)+..........+ \(\frac{1}{x+\left(x+1\right)}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{5}\)+.........+ \(\frac{1}{x}\)\(\frac{1}{x+1}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\): 2

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)\(\frac{1}{2}\)

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{502}{1005}\)

\(\frac{1}{x+1}\)\(\frac{1}{2}\)\(\frac{502}{1005}\)

\(\frac{1}{x+1}\)\(\frac{1}{2010}\)

\(\Rightarrow\)\(x+1\)= 2010

              \(\Leftrightarrow\) \(x\) = 2010 - 1

                   \(\Rightarrow\) \(x\)= 2009

                  Vậy \(x\)= 2009

7 tháng 5 2017

                                     \(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)

                              \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{1004}{1005}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)

                                                                                    \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)         

                                                                                             \(\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)       

                                                                                             \(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)            

                                                                                                         \(\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}\)          

                                                                                                          \(\frac{1}{x+1}=\frac{1}{2010}\)     

\(=>x+1=2010\)  

\(=>x=2009\)            

Vậy \(x=2009\)                    

1 tháng 7 2018

\(\frac{2}{2.3}\) +   \(\frac{2}{3.4}\) +  \(\frac{2}{4.5}\) + .......+ \(\frac{2}{x.\left(x+1\right)}\) = \(\frac{2017}{2019}\) 

2 . (  \(\frac{1}{2}\) -  \(\frac{1}{3}\) + \(\frac{1}{3}\) -  \(\frac{1}{4}\) + .......+  \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)

2 . ( \(\frac{1}{2}\) -  \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)

\(\frac{1}{2}\) -  \(\frac{1}{x+1}\) =  \(\frac{2017}{2019}\) : 2 

 \(\frac{1}{2}\) -  \(\frac{1}{x+1}\) = \(\frac{2017}{4038}\)

             \(\frac{1}{x+1}\)  =  \(\frac{1}{2}\)  -    \(\frac{2017}{4038}\)

              \(\frac{1}{x+1}\)  = \(\frac{1}{2019}\) 

     <=> x + 1 = 2019 => x = 2018

vậy x = 2018

1 tháng 7 2018

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2019}\)

\(\Rightarrow x+1=2019\)

\(\Leftrightarrow x=2018\)

Vậy  \(x=2018\)

20 tháng 1 2018

a, Ta có \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)

<=> \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)

<=> \(\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)-\left(\frac{x-3}{2009}-1\right)-\left(\frac{x-4}{2008}-1\right)=0\)

<=>\(\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\) 

<=> \(\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)

=> \(x-2012=0=>x=2012\)

20 tháng 1 2018

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)

=>\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}=2\cdot\frac{49}{99}\)

=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(1-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(\frac{2x}{2x+1}=\frac{98}{99}\)

=>2x = 98

=>x = 49

7 tháng 2 2017

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)