cho 2023 số a1,a2,...a2023 trong đó các số chỉ nhận kết quả nguyên là -1 và 1. chúng minh rằng tổng S= a1xa2xa3+a2xa3xa4+....+a2012xa2022xa2023 luôn khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2).
Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2)
<=> S = 0 (mod 2) (đpcm).
Ta có:
a1 + (a2 + a3 + a4) +... + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) < 0
a1 > 0; a2 + a3 + a4 > 0;...; a11 + a12 + a13 > 0; a15 + a16 + a17 > 0; a18 + a19 + a20 > 0; a14 < 0
Ta có:
(a1 + a2 + a3) +...+ (a10 + a11 + a12) + (a13 + a14) + (a15 + a16 + a17) + (a18 + a19 + a20)<0
=>(a13 + a14) < 0
Có a12 + a13 + a14 > 0 => a12 > 0
Từ các cmt => a1 > 0; a12 > 0; a14 < 0
=> a1.a14 + a12.a12 < a1.a12 (đpcm)
Ta có a1 +a2+...+a20 <0
Lại có a2+a3+a4 >0;
a5 +a6+a7 >0;
a8+a9+a10>0;
a11+a12+a13>0;
a15+a16+a17>0;
a18 +a19+a20>0;
a1>0
=> a14<0;
Lại có a1+a2+a3 >0;
a4+a5+a6>0;
....
a10+a11+a12>0;
a15+a16+a17>0;
a18+a19+a20>0;
=> a13+a14<0;
mà a12+a13+a14>0;
=>a12>0;
=> a1.a12>0;
a1.a14+a14.a12<0;
=>a1.a14+a14.a12<a1.a12