một hộp đựng 6 viên bi vàng và 5 viên bi đỏ 4 viên bi trắng hỏi bao nhiêu cách chọn ra 4 viên có cả 3 màu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng phương pháp gián tiếp:
Lấy ra 9 viên bi trong 15 viên bi bất kỳ, có C 15 9 cách.
Trường hợp 1: lấy 9 viên bi chỉ có 2 màu là xanh và đỏ, có C 11 9 cách.
Trường hợp 2: lấy 9 viên bi chỉ có 2 màu là xanh và vàng, có C 9 9 cách.
Trường hợp 3: lấy ra 9 viên bi chỉ có màu đỏ và vàng, có C 10 9 cách.
Vậy có : C 15 9 - ( C 11 9 + C 9 9 + C 10 9 ) = 4984 cách.
Chọn C.
Để lấy ra 5 viên khác màu thì mỗi viên ít nhất có 1 màu.
Lần đầu, nếu không may, ta sẽ bốc được 4 viên bi trắng.(.( không lấy màu khác vì đề yêu cầu ít nhất ))
Lần thứ hai, tiếp tục bốn tiếp được 6 viên đen.
Lần 3 bốc được 25 viên bi đỏ. ( lấy lần lượt các số tăng dần )
Lần 4, bốc được 30 viên xanh.
Và lần cuối chỉ còn viên vàng trong hộp nên ta chỉ lấy 1 viên.
Tổng số viên phải lấy là:\(4+6+25+30+1=66\left(vi\text{ê}n\right)\)
vậy...........
a: Số cách chọn là:
\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)
b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)
Số cách chọn 9 viên ko có đủ 3 màu là:
\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)
=>Có 4939 cách
TH1: 4 viên được lấy chỉ gồm 2 màu đỏ và trắng.
\(\Rightarrow\) Có \(C^4_7\) cách chọn.
TH2: 4 viên được lấy chỉ gồm 2 màu đỏ và vàng.
\(\Rightarrow\) Có \(C^4_8\) cách chọn.
TH3: 4 viên được lấy chỉ gồm 2 màu trắng và vàng.
\(\Rightarrow\) Có \(C^4_9\) cách chọn.
TH2 và TH3 đã bao gồm TH lấy 4 viên chỉ có màu trắng và 4 viên chỉ có màu vàng.
\(\Rightarrow\) Có \(C^4_7+C^4_8+C^4_9-C^4_4-C^4_5=225\) cách chọn ra 4 viên bi không đủ ba màu.
th1: (2 vàng, 1 đỏ, 1 trắng) số cách chọn là 6C2 x 5C1 x 4C1 = 300(cách)
th2:(1 vàng, 2 đỏ, 1 trắng) số cách chọn là 6C1 x 5C2 x 4C1 = 240 (cách)
th3:(1 vàng, 1 đỏ, 2 trắng) số cách chọn là 6C1 x 5C1 x 4C2 = 180 (cách)
-Vậy tổng số cách chọn là 300+240+180=720 cách