K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

26 tháng 1 2022

 

 

6 tháng 1 2015

a2+b2+1>= ab+a+b <=> a2+b2+1-ab-a-b>=0

<=> 2a2+2b2+2-2ab-2a-2b>=0

<=> (a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)

<=> (a-b)2+(a-1)2+(b-1)2>=0  ( Bất Đẳng Thức luôn đúng)

Vậy a2+b2+1>= ab+a+b

5 tháng 1 2015

trình bày ko dk hay lắm, để hỉu thui

 

15 tháng 4 2018

Ta có : 

\(a^2+b^2+4\ge ab+2\left(a+b\right)\)

\(\Leftrightarrow\)\(2a^2+2b^2+8\ge2ab+4a+4b\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\) ( thoã mãn với mọi a, b ) 

Vậy \(a^2+b^2+4\ge ab+2\left(a+b\right)\)

Sai thì thôi ạk em mới lớp 7 

15 tháng 4 2018

Thêm vào nha chị : 

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b\)

Vậy ...

Chúc chị học tốt ~ 

21 tháng 5 2016

\(\left(a-b\right)^2=a^2+b^2-2ab=a^2+b^2-4\)
=> \(a^2+b^2=\left(a-b\right)^2+4\)
\(M=\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+4}{a-b}=\left(a-b\right)+\frac{4}{a-b}\)
Do a>b => a-b>0
=> \(M\ge4\)
dấu = xảy ra <=> \(a=1+\sqrt{3},b=-1+\sqrt{3}\) hoặc \(a=1-\sqrt{3},b=-1-\sqrt{3}\)

21 tháng 5 2016

\(M=\frac{a^2+b^2}{a-b}\)

Đặt \(a^2+b^2=x\Rightarrow\left(a-b\right)^2=x-4\)

Vì a>b nên x-4>0

\(M^2=\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}=\frac{x^2}{x-4}\) . Dễ thấy Min \(\frac{x^2}{x-4}=16\) vì \(x^2-16\left(x-4\right)=\left(x-8\right)^2\ge0\)

Do \(M\ge0\) nên Min M = 4 khi và chỉ khi \(\hept{\begin{cases}a^2+b^2=8\\a-b=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1-\sqrt{3}\\b=-1-\sqrt{3}\end{cases}}\)hoặc \(\hept{\begin{cases}a=1+\sqrt{3}\\b=\sqrt{3}-1\end{cases}}\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

$a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:

$a-b=b-c=c-a=0$

$\Rightarrow a=b=c$

$\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1$

Khi đó:

$(\frac{a}{b}+1)(\frac{b}{c}+1)(\frac{c}{a}+1)=(1+1)(1+1)(1+1)=8$ 

Ta có đpcm.

9 tháng 2 2022

Ta có \(\left(a-b\right)^2\ge0\)

=>\(a^2-2ab+b^2\ge0\)

=>\(a^2+b^2\ge2ab\)

=>\(\dfrac{a^2+b^2}{ab}\ge2\)

=>\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

9 tháng 2 2022

undefined