cho \(\Delta ABC\) cân tại A.Kẻ BH \(\perp\)BC tại H
a.chứng minh \(\Delta ABH=\Delta ACH\)
b.vẽ trung tuyến CN.Gọi G là giao điểm của AH và CN.Chứng minh G là trọng tâm của \(\Delta ABC\)
c.từ H kẻ HE song song với AB (E thuộc AC).Chứng minh ba điểm B, G,E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
b: Xét ΔBCA có
AH,BM là các đường trung tuyến
AH cắt BM tại G
Do đó: G là trọng tâm
c: AH=24cm
=>AG=2/3AH=16cm
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
=>ΔABH=ΔACH
b: Xét ΔACB có
BM,AH là trung tuyến
BM cắt AH tại G
=>G là trọng tâm
=>C,G,N thẳng hàng
c: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
=>ΔABG=ΔACG
a: Xét ΔBAH vuông tại A và ΔBEH vuông tại E có
BH chung
góc ABH=góc EBH
=>ΔBAH=ΔBEH
=>BA=BE
=>ΔBAE cân tại B
b: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại H
=>H là trực tâm
=>HK vuông góc FC
c: Xét tứ giác QAKF có
M là trung điểm chung của QK và AF
=>QAKF là hình bình hành
=>QA//FK
=>Q,E,A thẳng hàng
a) Vì H là trung điểm của BC => HB=HC
Xét 2 tam giác ABH và tam giác AHC có :
AB=AC (gt)
BH=HC (cmt)
AH chung
Từ đó => tam giác ACH= tam giác ABH (c.c.c)
Vậy ......
hình như phần b bạn hơi sai đó
bạn xem lại có sai đầu bài hok ?? nha
a: Xét ΔABH vuông tai H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC co
AH,CN là trung tuyến
AH cắt CN tại G
=>G là trọng tâm
c: Xét ΔABC có
H là trung điểm của CB
HE//AB
=>E là trung điểm của AC
=>B,G,E thẳng hàng