Cho ABC nhọn, phân giác AD. Từ B và C kẻ các đường thẳng vuông góc với AD lần lượt tại E và F.
a) Chứng minh AEB đồng dạng AFC
b) Chứng minh BE.DF = CF.DE
c) Chứng minh CE, BF và phân giác góc ngoài tại A của ABC đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB=góc FAC
=>ΔAEB đồng dạng với ΔAFC
b: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có
góc EDB=góc FDC
=>ΔDEB đồng dạng với ΔDFC
=>BE/CF=DE/DF
=>BE*DF=CE*DF
a, HS tự làm
b, Chú ý hai đường phân giác trong và ngoài tại một đỉnh vuông góc nhau
c, Chú ý BM là phân giác góc ABC. Từ đó tính được số đo các góc của tam giác MAB và suy ra ĐPCM
Chú ý Hai tam giác MAB và ABC đều là các tam giác nửa đều
Từ đó tính được tỉ số đồng dạng là 1/2
a: Xét tứ giác CDHF có
góc CDF=góc CHF=90 độ
=>CDHF là tứ giác nội tiếp
b: Xét ΔBCA vuông tại C và ΔCDE vuông tại D có
góc CBA=góc DCE
=>ΔBCA đồng dạng với ΔCDE
=>DE/CA=CE/AB
=>DE*AB=CE*CA
BD là phân giác
=>DA/DC=BA/BC
mà CE/CD=BA/BC
nên DA=CE
=>DE*AB=AC*DA
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc BAE=góc CAF
=>ΔAEB đồng dạng với ΔAFC
b: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có
góc EDB=góc FDC
=>ΔDEB đồng dạng với ΔDFC
=>DE/DF=BE/CF
=>DE*CF=DF*BE