K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

â: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có

BI chung

góc ABI=góc EBI

=>ΔBAI=ΔBEI

=>IA=IE

mà IE<IC

nên IA<IC

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc B chung

=>ΔBEF=ΔBAC

=>BF=BC

mà BI là phân giác

nên BI vuông góc CF

25 tháng 4 2023

Làm thế nào để IE<IC vậy

a) Xét ΔABI vuông tại A và ΔEBI vuông tại E có

BI chung

\(\widehat{ABI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABI=ΔEBI(Cạnh huyền-góc nhọn)

Suy ra: AI=EI(hai cạnh tương ứng)

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=EB

b: AB<AC

=>góc C<góc B

=>góc C<45 độ

=>gócEDC>45 độ

=>góc C<góc EDC

=>ED<EC

=>DA<AM<DM

 

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên MCI^=NCI^(hai góc tương ứng)

hay BCA^=KCA^

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

BCA^=KCA^(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)

chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔCAB vuông tại A và ΔCAK vuông tại A có 

CA chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)

Suy ra: CA=CK(hai cạnh tương ứng)

Ta có: CN+NK=CK(N nằm giữa C và K)

CM+MB=CB(M nằm giữa C và B)

mà CK=CB(cmt)

và CN=CM(ΔCNI=ΔCMI)

nên NK=MB

mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(NK=\dfrac{BC}{2}\)

mà BC=KC(cmt)

nên \(NK=\dfrac{CK}{2}\)

mà điểm N nằm giữa hai điểm C và K

nên N là trung điểm của CK(đpcm)

c) Xét ΔAMB và ΔEMC có

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)

mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong

nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)

26 tháng 11 2021

ABCDIE12

1) Xét hai tam giác ABI và EBI có:

AB = EB (gt)

B1ˆ=B2ˆ(gt)B1^=B2^(gt)

BI: cạnh chung

Vậy: ΔABI=ΔEBI(c−g−c)ΔABI=ΔEBI(c−g−c)

Suy ra: BAIˆ=BEIˆBAI^=BEI^ (hai góc tương ứng)

Mà BAIˆ=90oBAI^=90o

Do đó: BEIˆ=90oBEI^=90o

2) Xét hai tam giác vuông AID và EIC có:

IA = IE (ΔABI=ΔEBIΔABI=ΔEBI)

AIDˆ=EICˆAID^=EIC^ (đối đỉnh)

Vậy: ΔAID=ΔEIC(cgv−gn)ΔAID=ΔEIC(cgv−gn)

Suy ra: ID = IC (hai cạnh tương ứng)

Do đó: ΔIDCΔIDC cân tại I

3) Ta có: AB = EB (gt)

⇒ΔABE⇒ΔABE cân tại B

⇒⇒ BI là đường phân giác đồng thời là đường trung trực AE

hay BI ⊥⊥ AE (1)

Ta lại có: AB = EB (gt)

AD = EC (ΔAID=ΔEICΔAID=ΔEIC)

=> BD = BC

=> ΔBDCΔBDC cân tại B

=> BI là đường phân giác đồng thời là đường cao của tam giác

hay BI ⊥⊥ DC (2)

Từ (1) và (2) suy ra: AE // DC (đpcm)

15 tháng 3 2022

Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC ở I. Từ I, kẻ IK ^ BC (K Î BC).

a) Chứng minh:  ∆ABI = ∆KBI.

b) Chứng minh: Tam giác ABK cân.

c) Chứng minh: BI là đường trung trực của đoạn thẳng AK.

 

 

a: Xét ΔABI vuông tại A và ΔHBI vuông tại H có

BI chung

\(\widehat{ABI}=\widehat{HBI}\)

Do đó:ΔABI=ΔHBI

b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có

IA=IH

\(\widehat{AIK}=\widehat{HIC}\)

Do đó; ΔAIK=ΔHIC

Suy ra: AK=HC

mà BA=BH

nên BK=BC

=>ΔBKC cân tại B

Sửa đề: F là giao điểm của tia BA và tia ED

Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

=>DA=DE

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>DF=DC

=>ΔDFC cân tại D