Tính: A= 1 - 1/1.2 - 1/2.3 - 1/3.4 - ...- 1/97.98
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}\)
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{99-98}{98.99}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
\(=1-\dfrac{1}{99}\)
\(A=\dfrac{2021}{2022}=\dfrac{2022-1}{2022}=1-\dfrac{1}{2022}\)
Có \(2022>99>0\Leftrightarrow\dfrac{1}{99}>\dfrac{1}{2022}\)
Suy ra \(A>B\).
Ta có : A = 1/1.2 + 1/2.3 + .... + 1/98.99 + 1/99.100 .
=> A = 1 - 1/2 + 1/2 - 1/3 + .... + 1/98 - 1/99 + 1/99 - 1/100 .
=> A = 1 - 1/100 .
=> A = 99/100 .
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}\)
\(\Rightarrow A=\frac{99}{100}\)
Đặt A=1.98+2.97+3.96+...+96.3+97.2+98.1
B=1.2+2,3+3.4+...+96.97+97.98+98.99
Ta có: A=1+(1+2)+...+(1+2+3+...+97+98)
=\(\dfrac{1.2}{2}+\dfrac{2.3}{2}+...+\dfrac{98.99}{3}\)
=\(\dfrac{1.2+2.3+3.4+4.5+...+98.99}{2}\)=\(\dfrac{B}{2}\)
=>E=\(\dfrac{B}{2}\):2=\(\dfrac{1}{2}\)
...
= 1/2-1/3+1/3-1/4+...+ 1/19-1/20
= 1/2-1/20
=9/20
có phải như thế này ko bn
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{19.20}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}\)
A = \(\frac{9}{20}\)
\(B=\frac{1}{99.100}-\frac{1}{98.99}-\frac{1}{97.98}-.....-\frac{1}{1.2}=-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)
\(B=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=-\left(1-\frac{1}{100}\right)\)
B = \(-\frac{99}{100}\)
CMR:
\(B=\dfrac{1.98+2.97+3.96+...+96.3+97.2+98.1}{1.2+2.3+3.4+...+96.97+97.98+98+99}=\dfrac{1}{2}\)
Đặt tổng trên = A
Có : 3A = 1.2.3+2.3.3+....+98.99.3
= 1.2.3+2.3.(4-1)+.....+98.99.(100-97)
= 1.2.3+2.3.4-1.2.3+.....+98.99.100-97.98.99
= 98.99.100
=> A = 98.99.100/3 = 323400
k mk nha
Gọi A = 1.2 + 2.3 + .. + 98.99
3A = 1.2.3 + 2.3.3 + ... + 98.99.3
3A = 1.2.3 + 2.3.(4 - 1) + ... + 98.99.(100 - 97)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 98.99.100 - 97.98.99
3A = 98.99.100
3A = 970200
A = 323400
A = 1 - \(\dfrac{1}{1.2}\) - \(\dfrac{1}{2.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}...-\dfrac{1}{97.98}\)
A= 1-\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{97.98}\right)\)
A= 1- \(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{97}-\dfrac{1}{98}\right)\)
A= 1- \(\left(\dfrac{1}{1}-\dfrac{1}{98}\right)\)
A=1- 1 + \(\dfrac{1}{98}\)
A= \(\dfrac{1}{98}\)
Lời giải:
$1-A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{97.98}$
$1-A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{98-97}{97.98}$
$1-A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{97}-\frac{1}{98}$
$=1-\frac{1}{98}$
$\Rightarrow A=\frac{1}{98}$