cho đa thức h
f(x)=\(x^3-2x^3+3x+1\)
g(x)=\(x^3+x-1\)
h(x)=\(2x^2-1\)
Tìm x sao cho f(x)-g(x)+h(x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
a) f(x) - g(x) - h(x) = (x3-2x2+3x+1)-(x3+x-1)-(2x2-1)
=x3- 2x2+3x + 1 -x3-x+1 - 2x2+1
= ( x3-x3)+(-2x2-2x2) + (3x-x)+(1 + 1 + 1 )
= -4x2 + 2x +3
c) thay x=1 vào đa thức f(x) ta có: f(1)=4.1^3-1^2+2.1-5
=4-2+2-5
=- 1
vậy 1 k phải là nghiệm của đa thức f(x)
MÌNH CHỈ LÀM ĐƯỢC C THÔI HOK TỐT
làm sai nha chỗ nào là 1 thì thay bằng -1 nha kq sẽ ra nha
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
h(x) + g(x) = f(x)
=> h(x)= f(x) - g(x) = \(3x^4+2x^2-2x^4+x^2-5x-\left(x^4-x^2-2x+6+3x^2\right)=x^2-3x-6\)\(h\left(-\dfrac{1}{3}\right)=\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)-6=\dfrac{-44}{9}\)
\(h\left(\dfrac{3}{2}\right)=\left(\dfrac{3}{2}\right)^2-3\cdot\dfrac{3}{2}-6=-\dfrac{33}{4}\)
\(x^2-3x-6=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{6}\\x=\dfrac{3-\sqrt{33}}{6}\end{matrix}\right.\)
dù bạn đăng nhầm nhưng mình vẫn trả lời nha !
a) f(x)- g(x)+h(x) = (x3-2x2+3x+1)-(x3+x-1)+(2x2-1)
f(x)- g(x)+h(x) = x3-2x2+3x+1- x3-x+1+2x2-1
f(x)- g(x)+h(x)= (x3-x3) +(2x2-2x2) +(3x-x)+(1+1-1)
f(x)- g(x)+h(x) = 0+0+2x+1
f(x)- g(x)+h(x) = 2x+1
b) Xét f(x)- g(x)+h(x)=0
Suy ra: 2x+1=0
2x= -1
x = - \(\dfrac{1}{2}\)
ta co \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=2x+1\)
nen \(2x+1=0\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)