K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1

20 tháng 5 2021

Tk

Bài 2

a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

=  \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)

=  2x + 1

b) 2x + 1 = 0

 2x = -1

 x=\(\dfrac{-1}{2}\)

4 tháng 6 2017

a) f(x) - g(x) - h(x) = (x3-2x2+3x+1)-(x3+x-1)-(2x2-1)

                          =x3- 2x2+3x + 1 -x3-x+1 - 2x2+1

                          = ( x3-x3)+(-2x2-2x2) + (3x-x)+(1 + 1 + 1 )

                          = -4x2 + 2x +3

19 tháng 5 2022

Tham khảo:

undefined

19 tháng 5 2022

như này đực hum cj #Mγη

21 tháng 5 2021

`a)f(x)-g(x)`

`=x^3-2x^2+3x+1-(x^3+x-1)`

`=x^3-2x^2+3x+1-x^3-x+1`

`=(x^3-x^3)+(3x-x)-2x^2+2`

`=-2x^2+2x+2=0`

`b)f(x)-g(x)+h(x)=0`

`<=>-2x^2+2x+2+2x^2-1=0`

`<=>2x+1=0`

`<=>2x=-1`

`<=>x=-1/2`

Vậy `x=-1/2` thì `f(x)-g(x)+h(x)=0`

21 tháng 5 2021

a) f(x) - g(x)=-2x2+2x+2

b) f(x) - g(x) + h(x) =2x-1=0

=> 2x=1

=>x=\(\dfrac{1}{2}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

NV
17 tháng 4 2021

1.

\(f\left(x\right)=2x^4+6x^3+8x^2+12x+1\)

2.

\(h\left(x\right)=\left(2x^4+6x^3+8x^2+12x+1\right)-\left(2x^4+6x^3+17x^2+12x-26\right)\)

\(=-9x^2+27\)

3.

\(h\left(x\right)=0\Leftrightarrow-9x^2+27=0\)

\(\Leftrightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)

28 tháng 4 2021

a)F(x)+G(x)-H(x)=(x^3-2x^2+3x+1)+(x^3+x-1)-(2x^2-1)

=x^3-2x^2+3x+1+x^3+x-1-2x^2+1

=(x^3+x^3)+(-2x^2-2x^2)+3x+(1-1+1)

=2x^3+(-4x^2)+3x+1

 

1 tháng 5 2017

ta co \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

                                                     \(=2x+1\)

nen \(2x+1=0\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)