\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\) \(E< \frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E<\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}=\left(\frac{1}{3}-\frac{1}{3^{101}}\right):2<\frac{3}{4}\)
bài nhà nữa thôi nha
đặt:
\(M=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+..+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)
do đó:
\(3M=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)
=>3M-M=2M=\(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)
ta thấy bthuc trong ngoặc nhỏ hơn 1/2
=>2M<1+1/2
hay M<3/4
![](https://rs.olm.vn/images/avt/0.png?1311)
=> 3E =1+2/3+3/3^2+...+100/3^99
=> 3E-E=1+1/3+1/3^2+...+1/3^99-100/3^100
=> 2E=1+1/3+1/3^2+...+1/3^99-100/3^100
=> 6E=3+1+1/3+1/3^2+....+1/3^98-100/3^99
=> 6E-2E=3-100/3^99+100/3^100
=> 4E=3-100/3^99+100/3^100
=> E=3/4 -100/3^99.4+100/3^100.4<3/4
Vậy E< 3/4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2E=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{203}{3^{100}}< 3\)
=> 4E < 3 => E < 3/4