Tính
a)9x⁶:3x³
b)25x⁷:(-5x²)
c)(3x⁵-6x³+9x²):(3x²)
d)(4x²+5x-6):(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
a) 4x + 3x = 217
x( 4 + 3 ) = 217
7x = 217
x = 217 : 7 = 31
Vậy x = 31
b) 9x - 3x = 216
( 9 -3)x = 216
6x = 216
x = 216:6 = 36
Vậy x = 36
c) 6x - 3x + 23 = 230
( 6 - 3 )x = 230 - 23
3x = 207
x = 207 : 3 = 69
Vậy x = 69
d) 5x + 3x + x = 72
5x + 3x + 1x = 72
( 5 + 3 + 1 )x = 72
9x = 72
x = 72 : 9 = 8
Vậy x = 8
Chúc bạn học tốt nhé
a) \(4x+3x=217\)
\(\Rightarrow x\cdot\left(3+4\right)=217\)
\(\Rightarrow7x=217\)
\(\Rightarrow x=\dfrac{217}{7}\)
\(\Rightarrow x=31\)
b) \(9x-3x=216\)
\(\Rightarrow x\cdot\left(9-3\right)=216\)
\(\Rightarrow6x=216\)
\(\Rightarrow x=\dfrac{216}{6}\)
\(\Rightarrow x=36\)
c) \(6x-3x+23=230\)
\(\Rightarrow x\cdot\left(6-3\right)=230-23\)
\(\Rightarrow3x=207\)
\(\Rightarrow x=\dfrac{207}{3}\)
\(\Rightarrow x=69\)
d) \(5x+3x+x=72\)
\(\Rightarrow x\cdot\left(5+3+1\right)=72\)
\(\Rightarrow9x=72\)
\(\Rightarrow x=\dfrac{72}{9}\)
\(\Rightarrow x=8\)
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
a: =4x^2+8x-3x-6
=4x(x+2)-3(x+2)
=(x+2)(4x-3)
b: =3(3x^2-2x-1)
=3(3x^2-3x+x-1)
=3(x-1)(3x+1)
c: =2x^2-4x+x-2
=2x(x-2)+(x-2)
=(x-2)(2x+1)
d: =3x^2+3x-2x-2
=3x(x+1)-2(x+1)
=(x+1)(3x-2)
e: =3x^2+9x+x+3
=3x(x+3)+(x+3)
=(x+3)(3x+1)
a) \(4x^2+5x-6\)
\(=4x^2+8x-3x-6\)
\(=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(4x-3\right)\)
b) \(9x^2-6x-3\)
\(=3\left(3x^2-2x-1\right)\)
\(=3\left(3x^2-3x+x-1\right)\)
\(=3\left[3x\left(x-1\right)+\left(x-1\right)\right]\)
\(=3\left(x-1\right)\left(3x+1\right)\)
c) \(2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=\left(2x^2-4x\right)+\left(x-2\right)\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
d) \(3x^2+x-2\)
\(=3x^2+3x-2x-2\)
\(=\left(3x^2+3x\right)-\left(2x+2\right)\)
\(=3x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-2\right)\)
e) \(3x^2+10x+3\)
\(=3x^2+9x+x+3\)
\(=3x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(3x+1\right)\)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
Giúp mình với