K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

4>=2(x^2+y^2)

4>=2x^2+2y^2

mà x^2+y^2>=2xy

4>=x^2+2xy+y^2

4>=(x+y)^2 

suy ra đpcm

28 tháng 4 2017

theo C-S , (x^2+y^2)(1^2+1^2) >/ (x+y)^2 => x^2+y^2 >/ (x+y)^2/2 

=>(x+y)^2/2 </ x^2+y^2 </ 2 => (x+y)^2 </ 4 => -2 </x+y<2

3 tháng 10 2020

Ta có : \(x^2+y^2\le x+y\)

\(\Rightarrow x+y-x^2-y^2\ge0\) (*)

Xét tổng : \(\left(x+y-x^2-y^2\right)+\left(x+y-2\right)\)

\(=-x^2+2x-1-y^2+2y-1\)

\(=-\left(x-1\right)^2-\left(y-1\right)^2\le0\) . Kết hợp với (*)

\(\Rightarrow x+y-2\le0\Rightarrow x+y\le2\)

18 tháng 5 2017

Từ đề bài đẽ thấy 

\(x-y=x^3+y^3>0\)

\(\Rightarrow x>y\)

Giả sử \(x^2+y^2\ge1\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)\ge x-y=x^3+y^3\)

\(\Leftrightarrow y\left(2y^2-xy+x^2\right)\le0\) (sai vì \(\hept{\begin{cases}y>0\\2y^2-xy+x^2>0\end{cases}}\))

Vậy \(x^2+y^2< 1\)

7 tháng 5 2016

Áp dụng bất đẳng thức  \(AM-GM\)  cho bộ ba số thực không âm gồm có \(x;\)  \(x;\)  \(2y\), khi đó, ta có:

\(x+x+2y\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)   \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(6\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(2\ge\sqrt[3]{2x^2y}\)  \(\Leftrightarrow\)  \(2^3\ge2x^2y\)  \(\Leftrightarrow\)  \(8\ge2x^2y\)  \(\Leftrightarrow\)  \(x^2y\le\frac{8}{2}=4\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x=2y}_{x+y=3}\)  \(\Leftrightarrow\)  \(^{x=2}_{y=1}\)

7 tháng 5 2016

bất đẳng thức này mình chưa học ạ. Đây là đề thi lớp 8. Nếu bạn có cách giải khác thì giải dùm mình. Tks 

26 tháng 7 2019

a) Áp dụng bất đẳng thức Cô-si:

\(2=x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\sqrt{xy}\le1\)

\(\Leftrightarrow xy\le1\)

Do \(x,y>0\Rightarrow xy>0\)

\(\Rightarrow0< xy\le1\)( đpcm )

b) Đề thiếu, cần thêm \(x+y=2\)\(x,y>0\)

Áp dụng bất đẳng thức Cô-si :

\(x^2y^2\left(x^2+y^2\right)\)

\(=\frac{1}{2}\cdot xy\cdot2xy\cdot\left(x^2+y^2\right)\le\frac{1}{2}\cdot\frac{\left(x+y\right)^2}{4}\cdot\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{1}{2}\cdot\frac{2^2}{4}\cdot\frac{2^4}{4}=2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)