Chi x, y thoả mãn x^2+y^2<=2 chứng minh -2<=x+y<=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài đẽ thấy
\(x-y=x^3+y^3>0\)
\(\Rightarrow x>y\)
Giả sử \(x^2+y^2\ge1\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)\ge x-y=x^3+y^3\)
\(\Leftrightarrow y\left(2y^2-xy+x^2\right)\le0\) (sai vì \(\hept{\begin{cases}y>0\\2y^2-xy+x^2>0\end{cases}}\))
Vậy \(x^2+y^2< 1\)
Áp dụng bất đẳng thức \(AM-GM\) cho bộ ba số thực không âm gồm có \(x;\) \(x;\) \(2y\), khi đó, ta có:
\(x+x+2y\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(6\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(2\ge\sqrt[3]{2x^2y}\) \(\Leftrightarrow\) \(2^3\ge2x^2y\) \(\Leftrightarrow\) \(8\ge2x^2y\) \(\Leftrightarrow\) \(x^2y\le\frac{8}{2}=4\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(^{x=2y}_{x+y=3}\) \(\Leftrightarrow\) \(^{x=2}_{y=1}\)
a) Áp dụng bất đẳng thức Cô-si:
\(2=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\sqrt{xy}\le1\)
\(\Leftrightarrow xy\le1\)
Do \(x,y>0\Rightarrow xy>0\)
\(\Rightarrow0< xy\le1\)( đpcm )
b) Đề thiếu, cần thêm \(x+y=2\)và \(x,y>0\)
Áp dụng bất đẳng thức Cô-si :
\(x^2y^2\left(x^2+y^2\right)\)
\(=\frac{1}{2}\cdot xy\cdot2xy\cdot\left(x^2+y^2\right)\le\frac{1}{2}\cdot\frac{\left(x+y\right)^2}{4}\cdot\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{1}{2}\cdot\frac{2^2}{4}\cdot\frac{2^4}{4}=2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
4>=2(x^2+y^2)
4>=2x^2+2y^2
mà x^2+y^2>=2xy
4>=x^2+2xy+y^2
4>=(x+y)^2
suy ra đpcm
theo C-S , (x^2+y^2)(1^2+1^2) >/ (x+y)^2 => x^2+y^2 >/ (x+y)^2/2
=>(x+y)^2/2 </ x^2+y^2 </ 2 => (x+y)^2 </ 4 => -2 </x+y<2