cho tam giac abc can tai A D la diem tuy y trong tam giac sao cho goc ADB <goc ADC cmr DC>DB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giac ABC can tai A, D la 1 diem nam trong tam giac sao cho goc ADB be hon goc ADC. C/m DB>DC
1) Xét 2 tam giác vuông ΔACH và ΔBCH ta có:
AC = AB (tam giac ABC can tai C)
CH: cạnh chung
=> ΔACH = ΔBCH (c.h - c.g.v)
=> AH = BH (2 cạnh tương ứng)
=> H là trung điểm của AB
2) Có: ΔACH = ΔBCH (câu 1)
\(\Rightarrow\widehat{ACH}=\widehat{BCH}\) (2 góc tương ứng)
Xét ΔΔCD và ΔBCD ta có:
AC = AB (tam giac ABC can tai C)
\(\widehat{ACH}=\widehat{BCH}\left(cmt\right)\)
CD: cạnh chung
=> ΔACD = ΔBCD (c - g - c)
=> AD = BD (2 cạnh tương ứng)
=> Tam giác ADB cân tại D
3) Xét ΔADK và ΔADH ta có:
AK = AH (GT)
\(\widehat{KAD}=\widehat{HAD}\left(GT\right)\)
AD: cạnh chung
=> ΔADK = ΔADH (c - g - c)
\(\Rightarrow\widehat{AKD}=\widehat{AHD}\) (2 góc tương ứng)
Mà: \(\widehat{AHD}=90^0\Rightarrow\widehat{AKD}=90^0\)
=> AK ⊥ DK
Hay: AC ⊥ DK
4) Có: H là trung điểm của AB (câu 1)
=> \(AH=\frac{1}{2}AB=\frac{1}{2}.8=4\left(cm\right)\)
ΔAHD vuông tại H. Áp dụng định lý Pitago ta có:
AD2 = AH2 + DH2
=> DH2 = AD2 - AH2 = 52 - 42 (cm)
=> DH2 = 25 - 16 = 9 (cm)
=> DH = 3 (cm)
a: BC=5cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C