2x-17=-(3x-18)
(x-2)(x+1)=0
(3-x)x=0
Nhanh nha m đang cần gấp !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3y = 0
=> y = 0
2. 1+x = 0
<+ x = -1
3.
\(1-2t=0\)
\(\Leftrightarrow2t=1\)
\(\Leftrightarrow\dfrac{1}{2}\)
4. 2x +x + 3 =0
\(\Leftrightarrow3x+3=0\)
\(\Leftrightarrow x=-3\)
5.
\(25x-20=0\)
\(\Leftrightarrow25x=20\)
\(\Leftrightarrow x=\dfrac{4}{5}\)
7.
2x-3 = x+5
<=> 2x - x = 5+3
<=> x = 8
8.
x-8=2x+3
<=> x - 2x = 3+8
<=> -x = 11
<=> x = -11
9. 17-2x = 3x-5
<=> -2x-3x = -5-17
<=> -5x = -22
<=> x = \(\dfrac{22}{5}\)
10.
2x+x+22=0
<=> 3x+22=0
<=> 3x = -22
<=> x = \(\dfrac{-22}{3}\)
Mấy bài kia tự giải tương tự nhá!!!
1,
( 2x-5) + 17=6
\(2x-5=6-17\)
\(2x-5=-11\)
\(2x=-11+5\)
\(2x=-6\)
\(x=-6:2\)
\(x=-3\)
Vậy \(x=3\)
2,
10-2(4-3x)=-4
\(-2\left(4-3x\right)=-4-10\)
\(-2\left(4-3x\right)=-14\)
\(4-3x=-14:\left(-2\right)\)
\(4-3x=7\)
\(-3x=7-4\)
\(-3x=3\)
\(x=3:\left(-3\right)\)
\(x=-1\)
Vậy \(x=-1\)
3,
-12+3(-x+7)=-18
\(3\left(-x+7\right)=-18+12\)
\(3\left(-x+7\right)=-6\)
\(-x+7=-6:3\)
\(-x+7=-2\)
\(-x=-2-7\)
\(-x=-9\)
\(x=9\)
\(\text{Vậy }x=9\)
4,
24:(3x -2)=-3
\(3x-2=24:\left(-3\right)\)
\(3x-2=-8\)
\(3x=-8+2\)
\(3x=-6\)
\(x=-6:3\)
\(x=-2\)
\(\text{Vậy }x=-2\)
5,
-45:5.(-3-2x)=3
\(5\left(-3-2x\right)=-45:3\)
\(5\left(-3-2x\right)=-15\)
\(-3-2x=-15:5\)
\(-3-2x=-3\)
\(-2x=-3+3\)
\(-2x=0\)
\(x=0\)
Vậy \(x=0\)
6,
x.(x+7)= 0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
\(\text{Vậy}\left\{{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
7,
( x+ 12 ) .( x-3)=0
\(\Rightarrow\left\{{}\begin{matrix}x+12=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
8,
(-x+5).(3-x) =0
\(\Rightarrow\left\{{}\begin{matrix}-x+5=0\\3-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-x=-5\\-x=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Vậy \(x=5\text{ hoặc }x=3\)
9, x.( 2+x).(7-x)=0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\2+x=0\\7-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
10,
(x-1).(x+2).(-x-3)=0
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+2=0\\-x-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=-2\\-x=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
(x+2)^2-(x-2)(x+2)=0
=> (x+2)(x+2-x+2)=0
=> (x+2).4=0
=> x+2=0
=> x=-2
mấy câu còn lại tự làm nha
a) (x+2)^2-(x-2)(x+2)=0
(x+2).[x+2-x+2]=0
(x+2).4=0
x+2=0
x=-2
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x2-4x+1-4x2+25=18
26-4x=18
4x=8
x=2
c)( 2x - 1)^2 - 25 = 0
( 2x - 1)^2 - 52 = 0
(2x-1-5)(2x-1+5)=0
(2x-6)(2x+4)=0
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\2x+4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
a) 4(x+2) - 7(2x - 1) + 9(3x - 4)=30
⇔4x+8 - 14x + 7 + 27x - 36 = 30
⇔ 17x = 51
⇔ x = 3
b) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
⇔ 10x - 16 - 12x + 15 = 12x - 16 + 11
⇔ -14x = -4
⇔ x= \(\frac{2}{7}\)
c) 5x(1 - 2x) - 3x(x + 18) = 0
⇔ 5x - 10x\(^2\) - 3x\(^2\) -54x =0
⇔ -13x\(^2\) -49 x = 0
⇔ -x ( 13x + 49 ) =0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\13x+49=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-49}{13}\end{matrix}\right.\)
d) 5x - 3{4x - 2[4x - 3(5x - 2)]} = 182
⇔ 5x - 3[ 4x - 2( 4x - 15x + 6 ) ]= 182
⇔5x - 3 ( 4x - 8x + 30x - 12 ) = 182
⇔ 5x - 3 ( 26x - 12 ) = 182
⇔ 5x - 78x + 36 = 182
⇔ - 73x = 146
⇔ x = -2
Câu 1:
a: \(\Leftrightarrow43-\left|x\right|=17-45=-28\)
\(\Leftrightarrow\left|x\right|=71\)
hay \(x\in\left\{71;-71\right\}\)
b: \(-12\left(x+5\right)+7\left(3-x\right)=5\)
=>-12x-60+21-7x=5
=>-19x-39=5
=>-19x=44
hay x=-44/19
c: \(\Leftrightarrow2x^2=29+3=32\)
=>x=4 hoặc x=-4
1. Rút gọn biểu thức :
\(M=4.\left(2-3x\right)-\left|2x-3\right|\) (*)
- Xét 2 TH :
+ Trường hợp 1 : \(\left|2x-3\right|=\left(2x-3\right)\) thì (*) trở thành :
\(M=4.\left(2-3x\right)-\left(2x-3\right)\)
\(\Rightarrow M=8-12x-2x+3\)
\(\Rightarrow M=-14x+11\)
+ Trường hợp 2 : \(\left|2x-3\right|=\left(3-2x\right)\) thì (*) trở thành :
\(M=4.\left(2-3x\right)-\left(3-2x\right)\)
\(\Rightarrow M=8-12x-3+2x\)
\(\Rightarrow M=-10x+5\)
Bài 1 Tìm x biết:
a)65-(29-x)=32
65 -29+x=31
x=31-65+29
x=-5
b)(x+5)-(x+23)=x-34
x+5 -x +23 = x-34
(x-x)+ (23+5)=x-34
0+28=x-34
28=x-34
28+34=x
62=x
=>x=62
c)(16-x)+(x-38)=x+44
16-x+x-38=x+44
-x+x-x=44-16+38
-x=36
=>x=-36
d)-12+3(-x+7)=-18
3(-x+7)=-18+12
3(-x+7)=-6
-x+7=-6:3
-x+7=-2
-x=-2-7
-x=-9
=>x=9
Baif 2
d)|7-x|=10
=> \(\left[{}\begin{matrix}7-x=10\\7-x=-10\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=7-10\\x=-10-7\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=-3\\x=-17\end{matrix}\right.\)
e)(x-6).(7-2x)=0
\(\Rightarrow\)\(\left[{}\begin{matrix}x-6=0\\7-2x=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0+6\\2x=7\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=6\\x=7:2\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=6\\x=3,5\end{matrix}\right.\)
f)(9-x).(2x+8)=0
\(\Rightarrow\)\(\left[{}\begin{matrix}9-x=0\\2x+8=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0+9\\2x=-8\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
g)x(-x+8).(-3x-18)=0
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\-x+8=0\\-3x-18=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\-x=0+8\\-3x=0+18\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\-x=8\\-3x=18\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=-8\\x=18:\left(-3\right)\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=-8\\x=-6\end{matrix}\right.\)
h)(-x+8).(x-54).(-24-x)=0
\(\Rightarrow\)\(\left[{}\begin{matrix}-x+8=0\\x-54=0\\-24-x=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}-x=8\\x=0+54\\-x=0+24\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=8\\x=54\\-x=24\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=8\\x=54\\x=-24\end{matrix}\right.\)
\(\left|2x-\frac{1}{2}\right|+1=3x\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)
a) (3x – 2)(4x + 5) = 0
⇔ 3x – 2 = 0 hoặc 4x + 5 = 0
⇔ 3x = 2 hoặc 4x = -5
⇔ x = \(\dfrac{2}{3}\) hoặc x = \(\dfrac{-5}{4}\)
Vậy tập nghiệm là S = {\(\dfrac{2}{3}\); \(\dfrac{-5}{4}\)}
b) 2x(x – 3) + 5(x – 3) = 0
⇔ (x – 3)(2x + 5) = 0
⇔ x – 3 = 0 hoặc 2x + 5 = 0
⇔ x = 3 hoặc 2x = \(-5\)
⇔ x = 3 hoặc x = \(\dfrac{-5}{2}\)
Vậy tập nghiệp là S = {3; \(\dfrac{-5}{2}\)}
2x - 17 = -(3x-18)
2x - 17 = -3x +18
2x + 3x = 18 - 17 = 1
5x = 1
x= 1:5=1/5
(x-2)(x+1)=0
=> x-2=0 hoặc x+1=0
*TH1: x-2=0
x=0+2=2
*TH2: x+1=0
X=0-1=-1
Vậy x thuộc tập hợp { 2;-1}
Câu 3 tương tụ câu 2 nhé!