P:y=x^2.lập phương trình đường thẳng d ua điểm A(2,3)và tiếp xúc với p
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đường thẳng d qua A có dạng: \(y=k\left(x+2\right)-2\)
Pt hoành độ giao điểm d và (P):
\(-\dfrac{1}{2}x^2=k\left(x+2\right)-2\Leftrightarrow x^2+2kx+4k-4=0\) (1)
d tiếp xúc (P) khi và chỉ khi (1) có nghiệm kép
\(\Leftrightarrow\Delta'=k^2-4k+4=0\Leftrightarrow k=2\)
Phương trình d: \(y=2x+2\)
- đường thẳng (d) tiếp xúc với (P) có hệ số góc k=y'=-x
- đường thẳng (d) đi qua A(-2;-2) => k=-xA=2
==> pt đường thẳng (d) là : y=2(x+2)-2 <=> y=2x+2
lập phương trình đường tròn qua A( 5,3) và tiếp xúc với đường thẳng (d) : x+3y+2=0 tại điểm B( 1,-1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do đường tròn tiếp xúc (d) tại B nên tâm đường tròn (C) sẽ nằm trên đường thẳng \(d_1\) qua B và vuông góc d
Phương trình \(d_1\) có dạng:
\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)
Do đường tròn đi qua A và B nên tâm đường tròn cũng nằm trên trung trực \(d_2\) của AB. Gọi M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;-4\right)=-4\left(1;1\right)\\M\left(3;1\right)\end{matrix}\right.\)
Phương trình \(d_2\):
\(1\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow x+y-4=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}3x-y-4=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow I\left(2;2\right)\)
\(\Rightarrow R=IA=\sqrt{3^2+1^2}=\sqrt{10}\)
Phương trình: \(\left(x-2\right)^2+\left(y-2\right)^2=10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Thay x=1 vào (P), ta được:
y=1^2=1
Thay x=1 và y=1 vào (d), ta được:
m+n=1
=>m=1-n
PTHĐGĐ là:
x^2-mx-n=0
=>x^2-x(1-n)-n=0
=>x^2+x(n-1)-n=0
Δ=(n-1)^2-4*(-n)
=n^2-2n+1+4n=(n+1)^2>=0
Để (P) tiếp xúc (d) thì n+1=0
=>n=-1
b: n=-1 nên (d): y=2x-1
(d1)//(d) nên (d1): y=2x+b
Thay x=2 vào y=x^2, ta được:
y=2^2=4
PTHĐGĐ là:
x^2-2x-b=0
Δ=(-2)^2-4*1*(-b)=4b+4
Để (d1) cắt (P) tại 2 điểm pb thì 4b+4>0
=>b>-1
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi đường thẳng cần tìm có đồ thị là (d): y = ax + b.
Xét phương trình hoành độ: \(x^2=ax+b\Leftrightarrow x^2-ax-b=0\) (1)
Để (d) tiếp xúc với (P) thì (1) sẽ có nghiệm kép.
Điều kiện để (1) có nghiệm kép là: \(\Delta_{\left(1\right)}=0\Leftrightarrow a^2+4b=0\) (2)
Mà đồ thị (d) tiếp xúc với (P) tại M(2;4) nên 2a + b = 4 (3)
Kết hợp (2) và (3) ta có HPT: \(\int^{a^2+4b=0}_{2a+b=4}\Leftrightarrow\int^{a^2+4\left(4-2a\right)=0}_{_{b=4-2a}}\Leftrightarrow\int^{a^2-8a+16=0}_{b=4-2a}\Leftrightarrow\int^{a=4}_{b=-4}\)
Vậy phương trình đường thẳng cần tìm là (d) : y = 4x - 4 ./.
![](https://rs.olm.vn/images/avt/0.png?1311)
Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(x=-1\Rightarrow y=1\Rightarrow A\left(-1;1\right)\)
\(x=2\Rightarrow y=4\Rightarrow B\left(2;4\right)\)
Phương trình đường thẳng AB có dạng \(y=ax+b\) đi qua A và B nên ta có hệ:
\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\Rightarrow y=x+2\left(AB\right)\)
2.
\(\left(d\right)//\left(AB\right)\Rightarrow x-y+c=0\left(d\right)\)
Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\):
\(x+c=x^2\)
\(\Leftrightarrow x^2-x-c=0\)
\(\Delta=1+4c=0\Leftrightarrow c=-\dfrac{1}{4}\)
\(\Rightarrow x-y-\dfrac{1}{4}=0\left(d\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Khi x=-2 thì (y+2)^2=25-(-2-1)^2=25-9=16
=>y=2 hoặc y=-6
TH1: A(-2;2)
I(1;-2)
vecto IA=(-3;4)
Phương trình Δ là:
-3(x-1)+4(y+2)=0
=>-3x+3+4y+8=0
=>-3x+4y+11=0
TH2: A(-2;-6); I(1;-2)
vecto IA=(-3;-4)=(3;4)
Phương trình IA là:
3(x+2)+4(y+6)=0
=>3x+6+4y+24=0
=>3x+4y+30=0
b: Δ//12x+5y+6=0
=>Δ: 12x+5y+c=0
d(I;Δ)=5
=>\(\dfrac{\left|12\cdot1+5\cdot\left(-2\right)+c\right|}{\sqrt{12^2+5^2}}=5\)
=>|c+2|=5*13=65
=>c=63 hoặc c=-67