Cho HCN ABCD (AB > BC).Lấy điểm M tùy ý trên cạnh AB ( M # A và B ) .Đường thẳng DM cắt AC ở K và cắt đường thẳng BC
a.Chứng minh KD mũ 2 =KM*KN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔPDN và ΔPMB có
góc PDN=góc PMB
góc DPN=góc MPB
=>ΔPDN đồng dạng với ΔPMB
=>PD/PM=DN/MB=AN/AM
Xét ΔQNE và ΔQCM có
góc QNE=góc QCM
góc NQE=góc CQM
=>ΔQNE đồng dạng với ΔQCM
=>QN/QC=NE/CM=QE/QM=AN/AM
=>QE/QM=DP/PM
=>MP/PD=MQ/QE
=>PQ//DE
=>PQ//BC
Cám ơn Bạn có lời giải giúp mình ! Lập luận rõ ràng chặt chẽ. Tuy thế có tình tiết xin cùng bàn luận thêm để cùng chia sẻ, mong bạn thông cảm. Đề toán cho.( M tùy chọn trênBC, N tùy chọn trênAM, DE là đường thẳng song song với BC sao cho cắt các cạnh bên của tam giác tại D và E)...Vì lẽ đó phải chăng cần làm rõ thêm ?...
1: Xét ΔADK và ΔCNK có
góc AKD=góc CKN
góc DAK=góc NCK
=>ΔADK đồng dạng với ΔCNK
2: Xét ΔKAM và ΔKCD có
góc KAM=góc KCD
góc AKM=góc CKD
=>ΔKAM đồng dạng với ΔKCD
=>KA/KC=KM/KD
=>KA*KD=KM*KC