chứng minh
1/5 + 1/13 + 1/25 + 1/41 + 1/61 + 1/85 + 1/113 < 3/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}\)
= \(\dfrac{1}{5}+(\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41})+(\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113})\)
=> A< \(\dfrac{1}{5}+(\dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12})+(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60})\)
A<\(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)=\(\dfrac{1}{2}\)
vậy A<\(\dfrac{1}{2}\),<2=> A<2 (đpcm)
1/5+1/13+1/25+1/41+1/61+1/85+1/113
=1/5+(1/13+1/25+1/41)+(1/85+1/61+1/113)<15+1/12+1/12+1/12+1/60+1/60+1/60
..............................................................<1/5+1/4+1/20
..............................................................<4/20+5/20+1/20
..............................................................<1/2
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{25}+\frac{1}{41}\right)+\left(\frac{1}{61}+\frac{1}{85}+\frac{1}{113}\right)\)
< \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{4}{20}+\frac{5}{20}+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(đpcm)
ê cho hỏi tại sao lại ra < \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)
a, 1/5+1/6+1/7+1/8+1/9 < 1/5.5=1 (1)
1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17 < 1/10.7 < 1/10.10 < 1 (2)
Từ (1) và (2) , suy ra 1/5+1/6+1/7+...+1/17 < 1+1 =2
Suy ra , 1/5+1/6+1/7+...+1/17 < 2
b, Ta cần c/m 1/13+1/25+1/41+1/61+1/85+1/113 < 3/10 (Vì 1/2 - 1/5 = 3/10)
1/13+1/25+1/41+1/61+1/85+1/113 < 1/10+1/25+1/25+1/25+1/25+1/25
1/13+1/25+1/41+1/61+1/85+1/113 < 1/10 + 5/25 = 1/10+1/5 = 3/10
Suy ra , 1/5+1/13+1/25+1/41+1/61+1/85+1/113 < 1/2
Bài a:
1.3.5......199 = 1.2.3.4......199.200/2.4.6.....200
= 1.2.3.4.........199.200/1.2.3.4....100.2100
=101.102.....200/2.2......2.2
=101/2 . 102/2 . 103/2 . ..... . 200/2
A = \(\dfrac{1}{5}\) + \(\dfrac{1}{13}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{41}\) + \(\dfrac{1}{61}\) + \(\dfrac{1}{85}\) + \(\dfrac{1}{113}\)
Vì: \(\dfrac{1}{25}\) > \(\dfrac{1}{41}\) > \(\dfrac{1}{61}\) > \(\dfrac{1}{85}\) > \(\dfrac{1}{113}\)
⇒ \(\dfrac{1}{25}\) \(\times\) 5 > \(\dfrac{1}{25}\) + \(\dfrac{1}{41}\) + \(\dfrac{1}{61}\) + \(\dfrac{1}{85}\) + \(\dfrac{1}{113}\)
⇒ \(\dfrac{1}{5}\) > \(\dfrac{1}{25}\) + \(\dfrac{1}{41}\) + \(\dfrac{1}{61}\) + \(\dfrac{1}{85}\) + \(\dfrac{1}{113}\)
\(\dfrac{1}{5}\) > \(\dfrac{1}{13}\)
\(\dfrac{1}{5}\) = \(\dfrac{1}{5}\)
Cộng vế với vế ta có:
\(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) > \(\dfrac{1}{5}\) + \(\dfrac{1}{13}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{41}\) + \(\dfrac{1}{61}\) + \(\dfrac{1}{85}\)+ \(\dfrac{1}{113}\)
\(\dfrac{3}{5}\) > \(\dfrac{1}{5}\)+ \(\dfrac{1}{13}\) \(\dfrac{1}{25}\) + \(\dfrac{1}{41}\) + \(\dfrac{1}{61}\) + \(\dfrac{1}{85}\)+ \(\dfrac{1}{113}\) ( đpcm)