Cho biểu thức : \(P=\frac{X^2+X}{\left(X-1\right)^2}\div\left(\frac{X+1}{X}+\frac{1}{X-1}+\frac{2-X^2}{X^2-X}\right)\)
a) Rút gọn P
B) Tìm X để P<1
C) Tìm \(X\in Z\)để P nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ \(x\ne0;x\ne1;x\ne-1\)
\(A=\frac{\left(x+1+1-x\right)}{\left(1-x^2\right)-\frac{5-x}{1-x^2}}:\frac{\left(1-2x\right)}{x^2-1}\)
\(A=\frac{\left(x-3\right)}{\left(1-x^2\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)
\(A=\frac{\left(3-x\right)}{\left(x^2-1\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)
\(A=\frac{\left(3x-2\right)}{1-2x}\)
\(a,ĐKXĐ:x\ne\pm1;x\ne\frac{1}{2}\)
\(A=\left(\frac{1}{x-1}+\frac{2}{x+1}-\frac{5-x}{1-x^{^2}}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{1}{x-1}+\frac{2}{x+1}+\frac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+1+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}:\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+4}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(=\frac{2x+4}{1-2x}\)
\(b,Vớix\ne\pm1;x\ne\frac{1}{2}\)ta có \(A=\frac{2x+4}{1-2x}=\frac{-1\left(1-2x\right)+5}{1-2x}=-1+\frac{5}{1-2x}\)
Với x thuộc Z để A nguyên thì \(5⋮1-2x\Rightarrow1-2x\inƯ\left\{5\right\}=\left\{\pm1;\pm5\right\}\)
Với 1-2x=1 => x= 0(TMĐKXĐ)
với 1-2x=-1 => x=1(loại)
với 1-2x=5 => x=-2(tmđkxđ)
với 1-2x=-5 => x=3(tmđkxđ)
Vậy với \(x\in\left\{0;-2;-3\right\}\)thì A nguyên
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
\(a,\text{để a xác định thì }\hept{\begin{cases}x-2\ne0\\2-x\ne0\end{cases}\Rightarrow x\ne2}\)
\(b,\left[\left(\frac{x+1}{x-2}+\frac{3}{2-x}-3x\right):\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)
\(=\left[\left(\frac{x+1}{x-2}-\frac{3}{x-2}-3x\right):\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)
\(=\left(1-3x\right)\cdot\frac{\left(x-2\right)}{1-3x}-\frac{x^2+4}{x-2}=\frac{\left(x-2\right)^2}{x-2}-\frac{x^2+4}{x-2}=\frac{-4x}{x-2}\)
Vậy với \(x=\frac{1}{2}\text{ }\Rightarrow A=\frac{-\frac{4.1}{2}}{\frac{1}{2}-2}=\frac{4}{3}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{8}{x^2-1}\right):\left(\frac{1}{x-1}-\frac{7x+3}{1-x^2}\right)\)
\(A=\left[\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x+1\right)\left(x-1\right)}+\frac{8}{\left(x+1\right)\left(x-1\right)}\right]:\left[\frac{x+1}{\left(x+1\right)\left(x-1\right)}-\frac{3-7x}{\left(x+1\right)\left(x-1\right)}\right]\)
\(A=\left[\frac{x^2+2x+1-x^2+2x-1+8}{\left(x+1\right)\left(x-1\right)}\right]:\frac{x+1-3+7x}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{4x+8}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{8x-2}\)
......................
a) P = \(\left(\frac{x}{x-1}+\frac{1}{x^2-x}\right):\left(\frac{1}{x+1}+\frac{2}{x^2+1}\right)\)
=> P = \(\left(\frac{x^2}{\left(x-1\right)x}+\frac{1}{x\left(x-1\right)}\right):\left(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2}{\left(x+1\right)\left(x-1\right)}\right)\)
=> P = \(\left(\frac{x^2+1}{x\left(x-1\right)}\right):\left(\frac{x-1+2}{\left(x+1\right)\left(x-1\right)}\right)\)
=> P = \(\frac{x^2+1}{x\left(x-1\right)}:\frac{x+1}{\left(x+1\right)\left(x-1\right)}\)
=> P = \(\frac{x^2+1}{x\left(x-1\right)}\cdot\left(x-1\right)\)
=> P = \(\frac{x^2+1}{x}\)
b) ĐKXĐ: x \(\ne\)0; x \(\ne\)\(\pm\)1
Để P > -1
=> \(\frac{x^2+1}{x}>-1\)
=> \(\frac{x^2+1}{x}+1>0\)
=> \(\frac{x^2+1+x}{x}>0\)
Do x2 + x + 1 > 0 \(\forall\)x (vì x2 + x + 1 = x2 + x + 1/4 + 3/4 = (x + 1/2)2 + 3/4 > 0 : giải thích)
=> x > 0
Vậy để P > -1 <=> x > 0 và x \(\ne\)1
a)
\(P=\left(\frac{x}{x-1}+\frac{1}{x^2-x}\right):\left(\frac{1}{x+1}+\frac{1}{x^2+1}\right)\)
\(P=\left(\frac{x}{x-1}+\frac{1}{x\left(x-1\right)}\right):\left(\frac{1}{x+1}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right)\)
\(P=\left(\frac{x^2}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}\right):\left(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right)\)
\(P=\frac{x^2+1}{x\left(x-1\right)}:\frac{x-1}{\left(x+1\right)\left(x-1\right)}\)
\(P=\frac{x^2+1}{x\left(x-1\right)}:\frac{1}{x+1}\)
?????????????????? Đề
tự làm nốt k hiểu đề cho sai à