K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

=> 144x - 100(x + 2) = 2x(x + 2)

<=> 144x - 100x - 200 =  2x+ 4x

 <=> - 2x2  + 40x - 200 = 0

<=> -2x + 20x + 20x - 200 = 0

<=> (x - 10)(-2x + 20) = 0

<=> x - 10 = 0 hoặc -2x + 20 = 0 

<=> x = 10 

24 tháng 4 2017

 cảm ơn câu hỏi của bạn nka !!!    ĐKXĐ của phương trình \(\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)

\(\frac{144}{x+2}-\frac{100}{x}=2\)

\(\Rightarrow\frac{144x}{x\left(x+2\right)}-\frac{100\left(x+2\right)}{x\left(x+2\right)}=\frac{2x\left(x+2\right)}{x\left(x+2\right)}\) 

\(\Rightarrow144x-100x-200=2x^2+4x\) 

 \(\Leftrightarrow144x-100x-4x-200-2x^2=0\)

\(\Leftrightarrow40x-200-2x^2=0\)

 \(\Leftrightarrow-2\left(x^2-20x+100\right)=0\)

 \(\Leftrightarrow-2\left(x-10\right)^2=0\)\(\Leftrightarrow\left(x-10\right)^2=0\)\(\Leftrightarrow x=10\)(NHẬN)

 vậy tập nghiệm của phương trình là   S= 10

26 tháng 2 2017

Theo bài ra , ta có :

\(\frac{144}{x+2}-\frac{100}{x}=2\left(ĐKXĐ:x\ne0;x\ne2\right)\)

Quy đồng cà khử mẫu ta được :

\(144x-100\left(x+2\right)=2x\left(x+2\right)\)

\(\Leftrightarrow144x-100x-200=2x^2+4x\)

\(\Leftrightarrow44x-200-2x^2-4x=0\)

\(\Leftrightarrow-2x^2+40x-200=0\)

\(\Leftrightarrow-2\left(x^2-20x+100\right)=0\)

\(\Leftrightarrow x^2-20x+100=0\)

\(\Leftrightarrow\left(x-10\right)^2=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

Vậy \(S=\left\{10\right\}\)

Chúc bạn hok tốt =))ok

26 tháng 2 2017

\(\frac{144}{x+2}-\frac{100}{x}=2\left(1\right)\)

ĐKXĐ : \(x\ne-2;x\ne0\)

MTC : x(x + 2 )

\(\left(1\right)\Leftrightarrow\frac{144x}{x\left(x+2\right)}-\frac{100\left(x+2\right)}{x\left(x+2\right)}=\frac{2x\left(x+2\right)}{x\left(x+2\right)}\)

\(\Leftrightarrow144x-100x-200=2x^x+4x\)

\(\Leftrightarrow2x^2+4x-144x+100x+200=0\)

\(\Leftrightarrow2x^2-40x+200=0\)\(\Leftrightarrow2\left(x^2-20x+10^2\right)=0\)

\(\Leftrightarrow2\left(x-10\right)^2=0\)\(\Leftrightarrow\left(x-10\right)^2=0\)

\(\Leftrightarrow x-10=0\Leftrightarrow x=10\left(chọn\right)\)

Vậy tập nghiệm của phương trình là S = { 10 }

21 tháng 2 2019

\(\frac{144}{x+2}-\frac{100}{x}=2\)

\(\frac{144}{x-2}.x\left(x+2\right)-\frac{100}{x}.x\left(x+2\right)=2.x\left(x+2\right)\)

144x - 100(x + 2) = 2.x(x + 2)

x = 10

=> x = 10

K chắc nhá :w

21 tháng 2 2019

\(ĐK:x\ne-2;x\ne0\)

\(\frac{144}{x+2}-\frac{100}{x}=2\)

\(\Leftrightarrow\frac{144}{x+2}-\frac{100}{x}-2=0\Leftrightarrow\frac{144x-100x-200-2x^2-4x}{\left(x+2\right)x}=0\)

\(\Leftrightarrow\frac{40x-2x^2-200}{\left(x+2\right)x}=0\Leftrightarrow40x-2x^2-200=0\Leftrightarrow20x-x^2-200=0\)

\(\Leftrightarrow-\left(20x-x^2-200\right)=0\Leftrightarrow x^2-20x+200=0\)

\(\Leftrightarrow\left(x-10\right)^2+100=0\left(\text{vô lí}\right)\)

\(\text{Vậy: pt vô nghiệm}\)

4 tháng 3 2019

pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)

đk: x khác 2

Đặt \(\frac{x^2}{x-2}=t\)

Ta có phương trình:

\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với t=2 ta có:

\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí

Với t=-2:

\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)

Vậy...

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

7 tháng 8 2020

Bài làm:

PT:

đkxđ: \(x\ne0;x\ne2\)

Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+2x=2+x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)

BPT:

Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)

\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)

\(\Leftrightarrow\frac{-x}{2}\le0\)

\(\Rightarrow-x\le0\)

\(\Rightarrow x\ge0\)

7 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow-x^2-x=0\)

\(\Leftrightarrow-x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)

Vậy \(S=\left\{-1\right\}\)

b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow x+1-2x-1\le0\)

\(\Leftrightarrow-x\le0\)

\(\Leftrightarrow x\ge0\)

Vậy \(x\ge0\)

2 tháng 3 2023

\(\dfrac{x+3}{x-3}-\dfrac{x}{x+3}=\dfrac{2x^2+9}{x^2-9}\left(x\ne-3;x\ne3\right)\\ < =>\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2x^2+9}{\left(x-3\right)\left(x+3\right)}\)

suy ra

`x^2 +6x+9-x^2 +3x=2x^2 +9`

`<=> 2x^2 - x^2 +x^2 - 6x -3x +9 -9=0`

`<=> 2x^2 -9x=0`

`<=> x(2x-9)=0`

\(< =>\left[{}\begin{matrix}x=0\\2x-9=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j