(617/191+29/33-115/117)x(1/4-1/5-1/20)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(\dfrac{617}{191}+\dfrac{29}{33}-\dfrac{115}{17}\right)\cdot\left(\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{20}\right)\)
\(=\left(\dfrac{617}{191}+\dfrac{29}{33}-\dfrac{115}{17}\right)\cdot\left(\dfrac{5}{20}-\dfrac{4}{20}-\dfrac{1}{20}\right)\)
\(=0\cdot\left(\dfrac{617}{191}+\dfrac{29}{33}-\dfrac{115}{17}\right)=0\)
b) Ta có: \(\dfrac{12}{5}\cdot\left(\dfrac{10}{3}-\dfrac{5}{12}\right)\)
\(=\dfrac{12}{5}\cdot\left(\dfrac{40}{12}-\dfrac{5}{12}\right)\)
\(=\dfrac{12}{5}\cdot\dfrac{35}{12}\)
=7
\(3\frac{1}{117}\)x \(4\frac{1}{119}\)- \(1\frac{116}{117}\)x \(5\frac{115}{119}\)- \(\frac{5}{119}\)
= \(\frac{1889}{13923}\)
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
(617/191+29/33-115/117)*(1/4-1/5-1/20)
= (617/191+29/33-115/117)*(5/20-4/20-1/20)
=(617/191+29/33-115/117)*0
=0
\(\left(\dfrac{617}{191}+\dfrac{29}{33}-\dfrac{115}{117}\right)\times\left(\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{20}\right)\\ =\left(\dfrac{617}{191}+\dfrac{29}{33}-\dfrac{115}{117}\right)\times0\\ =0\)