TAM GIÁC ABC CÓ PHÂN GIÁC BD,CE CẮT NHAU I, BIẾT AD = AE . CHỨNG MINH TAM GIÁC ABC CÂN TẠI A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta ABD\left(D=1v\right)\) và \(\Delta ACE\left(E=1v\right)\) có:
góc A chung (gt)
AB = AC (\(\Delta ABC\) cân tại A)
=> \(\Delta ABD=\Delta ACE\) (ch-gn)
b/ Xét\(\Delta ABK\left(K=1v\right)\) và \(\Delta ACK\left(K=1v\right)\) có:
AB = AC (\(\Delta ABC\) cân tại A)
AK chung (gt)
=> \(\Delta ABK=\Delta ACK\) (ch-cgv)
=> góc BAK = góc CAK (hai góc tương ứng)
=> AK là tia phân giác của góc BAC
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
Xét ΔBAC có BD là phân giác
nên AD/DC=AB/BC
=>DC*AB=AD*BC=AE*BC
Xét ΔACB có CE là phân giác
nên AE/AC=EB/CB
=>AC*EB=AE*BC=DC*AB
=>AC/DC=AB/EB
=>DC/AC=EB/AB
=>AD/AC=AE/AB
=>AC=AB
=>ΔABC cân tại A