Cho ∆ MNP vuông tại M lấy điểm k sao cho MN= MK a )so sánh MN và NP b) CM góc MNK= MKN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B ở đâu vậy bạn ? Trong đề làm gì có nói kẻ B mà từ B đã kẻ đường vuông góc rồi ?
a: Xét ΔMNK và ΔMIK có
MN=MI
góc NMK=góc IMK
MK chung
=>ΔMNK=ΔMIK
=>KN=KI
=>ΔKNI cân tại K
b: ΔMNK=ΔMIK
=>góc MIK=góc MNK=90 độ
b: Xét ΔMEP có
EI,PN là đường cao
EI cắt PN tại K
=>K là trực tâm
=>MK vuông góc EP
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N
mà \(\widehat{MNK}=60^0\)
nên ΔNMK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔMNK có NM=NK
nên ΔMNK cân tại N
Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)
nên ΔMNK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
Hình tự vẽ :(
Gọi \(Q\) là giao điểm của \(HK\) và \(MN\)
\(\Rightarrow KQ\) là đường trung tuyến của \(\Delta MNK\Rightarrow QM=QN\)
Xét \(\Delta MNI\) và \(\Delta KNM\) \(\left(\widehat{M}=\widehat{K}=90^o\right)\)
ta có: \(\widehat{N}\) là góc chung
\(\Rightarrow\Delta MNI\sim\Delta KNM\) \(\left(g-g\right)\)
mà \(\Delta KNM\) là tam giác vuông cân tại \(\widehat{K}\) \(\left(gt\right)\)
\(\Rightarrow\Delta MNI\) là tam giác vuông cân tại \(\widehat{M}\)
\(\Rightarrow MN=MI\) \(\Rightarrow MI=5\)
mà \(MK\) là đường cao của \(\Delta MNI\)
\(\Rightarrow MK\) cũng là trung tuyến của \(\Delta MNI\)
\(\Rightarrow KN=KI\)
Xét \(\Delta MNI\) ta có:
\(QN=QM\) \(\left(cmt\right)\)
\(KN=KI\) \(\left(cmt\right)\)
\(\Rightarrow QK\) là đường trung bình của \(\Delta MNI\)
\(\Rightarrow QK=\dfrac{MI}{2}=\dfrac{5}{2}\)
Xét \(\Delta MNP\) ta có:
\(QN=QM\) \(\left(cmt\right)\)
\(HN=HP\) (\(H\) là trung điểm của \(NP\))
\(\Rightarrow QH\) là đường trung bình của \(\Delta MNP\)
\(\Rightarrow QH=\dfrac{MP}{2}=\dfrac{13}{2}\)
Ta có \(QH=QK+HK\)
\(\Rightarrow HK=QH-QK=\dfrac{13}{2}-\dfrac{5}{2}=4\)
Vậy \(HK=4\)
\(\text{#TNam}\)
`a,`
Xét Tam giác `MNP:`\(\widehat{M}=90^0\)
`-> \text {NP là cạnh lớn nhất} (\text {theo định lý giữa góc và cạnh đối diện})`
`-> MN < NP`
`b,`
Xét Tam giác `MNK: MN = MK`
`-> \text {Tam giác MNK cân tại M}`
`->`\(\widehat{MNK}=\widehat{MKN}.\)